DOI QR코드

DOI QR Code

Vaccinomics and adversomics: key elements for a personalized vaccinology

  • Antonio Lagana (Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina) ;
  • Giuseppa Visalli (Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina) ;
  • Angela Di Pietro (Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina) ;
  • Alessio Facciola (Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina)
  • Received : 2023.12.14
  • Accepted : 2024.03.12
  • Published : 2024.04.30

Abstract

Vaccines are one of the most important and effective tools in the prevention of infectious diseases and research about all the aspects of vaccinology are essential to increase the number of available vaccines more and more safe and effective. Despite the unquestionable value of vaccinations, vaccine hesitancy has spread worldwide compromising the success of vaccinations. Currently, the main purpose of vaccination campaigns is the immunization of whole populations with the same vaccine formulations and schedules for all individuals. A personalized vaccinology approach could improve modern vaccinology counteracting vaccine hesitancy and giving great benefits for human health. This ambitious purpose would be possible by facing and deepening the areas of vaccinomics and adversomics, two innovative areas of study investigating the role of a series of variables able to influence the immune response to vaccinations and the development of serious side effects, respectively. We reviewed the recent scientific knowledge about these innovative sciences focusing on genetic and non-genetic basis involved in the individual response to vaccines in terms of both immune response and side effects.

Keywords

References

  1. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 2021;21:83-100.
  2. World Health Organization. WHO position paper on behavioural and social drivers of vaccine uptake [Internet]. Geneva: World Health Organization; 2022 [cited 2023 Aug 18]. Available from: https://iris.who.int/bitstream/handle/10665/354458/WER9720-eng-fre.pdf?sequence=1
  3. Facciola A, Visalli G, Orlando A, et al. Vaccine hesitancy: an overview on parents' opinions about vaccination and possible reasons of vaccine refusal. J Public Health Res 2019;8:1436.
  4. Facciola A, Visalli G, Lagana A, Di Pietro A. An overview of vaccine adjuvants: current evidence and future perspectives. Vaccines (Basel) 2022;10:819.
  5. Scepanovic P, Alanio C, Hammer C, et al. Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines. Genome Med 2018;10:59.
  6. Poland GA, Ovsyannikova IG, Kennedy RB. Personalized vaccinology: a review. Vaccine 2018;36:5350-7.
  7. Visalli G, Lagana A, Lo Giudice D, et al. Towards a future of personalized vaccinology: study on individual variables influencing the antibody response to the COVID-19 vaccine. Vaccines (Basel) 2023;11:217.
  8. Hoffman SL, Rogers WO, Carucci DJ, Venter JC. From genomics to vaccines: malaria as a model system. Nat Med 1998;4:1351-3.
  9. Omersel J, Karas Kuzelicki N. Vaccinomics and adversomics in the era of precision medicine: a review based on HBV, MMR, HPV, and COVID-19 vaccines. J Clin Med 2020;9:3561.
  10. Whitaker JA, Ovsyannikova IG, Poland GA. Adversomics: a new paradigm for vaccine safety and design. Expert Rev Vaccines 2015;14:935-47.
  11. Kwok R. Vaccines: the real issues in vaccine safety. Nature 2011;473:436-8.
  12. National Human Genome Research Institute. Allele [Internet]. Bethesda (MD): National Human Genome Research Institute; 2023 [cited 2023 Apr 15]. Available from: https://www.genome.gov/genetics-glossary/Allele
  13. Brookes AJ. The essence of SNPs. Gene 1999;234:177-86.
  14. Shastry BS. SNPs: impact on gene function and phenotype. Methods Mol Biol 2009;578:3-22.
  15. Linnik JE, Egli A. Impact of host genetic polymorphisms on vaccine induced antibody response. Hum Vaccin Immunother 2016;12:907-15.
  16. Liu Z, Li Y, Wang Y, Bai X, Zhang Y. Exosomes in HBV infection. Clin Chim Acta 2023;538:65-9.
  17. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1151-210.
  18. Tang LS, Covert E, Wilson E, Kottilil S. Chronic hepatitis B infection: a review. JAMA 2018;319:1802-13.
  19. Chen DS. Hepatitis B vaccination: the key towards elimination and eradication of hepatitis B. J Hepatol 2009;50:805-16.
  20. Walayat S, Ahmed Z, Martin D, Puli S, Cashman M, Dhillon S. Recent advances in vaccination of non-responders to standard dose hepatitis B virus vaccine. World J Hepatol 2015;7:2503-9.
  21. Mormile R. Hepatitis B vaccine non response: a predictor of latent autoimmunity? Med Hypotheses 2017;104:45-7.
  22. Newport MJ, Goetghebuer T, Weiss HA, et al. Genetic regulation of immune responses to vaccines in early life. Genes Immun 2004;5:122-9.
  23. Hohler T, Reuss E, Evers N, et al. Differential genetic determination of immune responsiveness to hepatitis B surface antigen and to hepatitis A virus: a vaccination study in twins. Lancet 2002;360:991-5.
  24. Nishida N, Sugiyama M, Sawai H, et al. Key HLA-DRB1-DQB1 haplotypes and role of the BTNL2 gene for response to a hepatitis B vaccine. Hepatology 2018;68:848-58.
  25. Davila S, Froeling FE, Tan A, et al. New genetic associations detected in a host response study to hepatitis B vaccine. Genes Immun 2010;11:232-8.
  26. Pan L, Zhang L, Zhang W, et al. A genome-wide association study identifies polymorphisms in the HLA-DR region associated with non-response to hepatitis B vaccination in Chinese Han populations. Hum Mol Genet 2014;23:2210-9.
  27. Roh EY, Yoon JH, In JW, Lee N, Shin S, Song EY. Association of HLA-DP variants with the responsiveness to hepatitis B virus vaccination in Korean Infants. Vaccine 2016;34:2602-7.
  28. Okada Y, Uno N, Sato S, et al. Strong influence of human leukocyte antigen-DP variants on response to hepatitis B vaccine in a Japanese population. Vaccine 2017;35:5662-5.
  29. Roh EY, Song EY, Yoon JH, et al. Effects of interleukin-4 and interleukin-12B gene polymorphisms on hepatitis B virus vaccination. Ann Hepatol 2017;16:63-70.
  30. Xie B, Zhang P, Liu M, Zeng W, Yang J, Liu H. Deltex1 polymorphisms are associated with hepatitis B vaccination non-response in southwest China. PLoS One 2016;11:e0149199.
  31. Duan Z, Chen X, Liang Z, et al. Genetic polymorphisms of CXCR5 and CXCL13 are associated with non-responsiveness to the hepatitis B vaccine. Vaccine 2014;32:5316-22.
  32. Liu X, Zhang L, Wu XP, et al. Polymorphisms in IRG1 gene associated with immune responses to hepatitis B vaccination in a Chinese Han population and function to restrain the HBV life cycle. J Med Virol 2017;89:1215-23.
  33. Borzooy Z, Streinu-Cercel A, Mirshafiey A, et al. IL-17 and IL-22 genetic polymorphisms in HBV vaccine non- and low-responders among healthcare workers. Germs 2016;6:14-20.
  34. Moss WJ. Measles. Lancet 2017;390:2490-502.
  35. Kubota M, Hashiguchi T. Unique tropism and entry mechanism of mumps virus. Viruses 2021;13:1746.
  36. Winter AK, Moss WJ. Rubella. Lancet 2022;399:1336-46.
  37. Ovsyannikova IG, Pankratz VS, Vierkant RA, Jacobson RM, Poland GA. Consistency of HLA associations between two independent measles vaccine cohorts: a replication study. Vaccine 2012;30:2146-52.
  38. Haralambieva IH, Kennedy RB, Ovsyannikova IG, Whitaker JA, Poland GA. Variability in humoral immunity to measles vaccine: new developments. Trends Mol Med 2015;21:789-801.
  39. Tan PL, Jacobson RM, Poland GA, Jacobsen SJ, Pankratz VS. Twin studies of immunogenicity: determining the genetic contribution to vaccine failure. Vaccine 2001;19:2434-9.
  40. Schaid DJ, Haralambieva IH, Larrabee BR, Ovsyannikova IG, Kennedy RB, Poland GA. Heritability of vaccine-induced measles neutralizing antibody titers. Vaccine 2017;35:1390-4.
  41. Dhiman N, Ovsyannikova IG, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA. Associations between cytokine/cytokine receptor single nucleotide polymorphisms and humoral immunity to measles, mumps and rubella in a Somali population. Tissue Antigens 2008;72:211-20.
  42. Ovsyannikova IG, Poland GA. Vaccinomics: current findings, challenges and novel approaches for vaccine development. AAPS J 2011;13:438-44.
  43. Ovsyannikova IG, Haralambieva IH, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA. The role of polymorphisms in toll-like receptors and their associated intracellular signaling genes in measles vaccine immunity. Hum Genet 2011;130:547-61.
  44. Voigt EA, Haralambieva IH, Larrabee BL, et al. Polymorphisms in the Wilms tumor gene are associated with interindividual variations in rubella virus-specific cellular immunity after measles-mumps-rubella II vaccination. J Infect Dis 2018;217:560-6.
  45. Ovsyannikova IG, Dhiman N, Haralambieva IH, et al. Rubella vaccine-induced cellular immunity: evidence of associations with polymorphisms in the toll-like, vitamin A and D receptors, and innate immune response genes. Hum Genet 2010;127:207-21.
  46. Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 2018;391:1285-300.
  47. Centers for Disease Control and Prevention. Vaccine effectiveness: how well do flu vaccines work? [Internet]. Atlanta (GA): Centers for Disease Control and Prevention; 2021 [cited 2022 Dec 7]. Available from: https://www.cdc.gov/flu/vaccineswork/vaccineeffect.htm
  48. Zhong S, Wei H, Li M, et al. Single nucleotide polymorphisms in the human leukocyte antigen region are associated with hemagglutination inhibition antibody response to influenza vaccine. Front Genet 2022;13:790914.
  49. Tsang TK, Wang C, Tsang NN, et al. Impact of host genetic polymorphisms on response to inactivated influenza vaccine in children. NPJ Vaccines 2023;8:21.
  50. Wen S, Wei H, Liao Q, et al. Identification of two novel candidate genetic variants associated with the responsiveness to influenza vaccination. Front Immunol 2021;12:664024.
  51. Li M, Wei H, Zhong S, et al. Association of single nucleotide polymorphisms in LEP, LEPR, and PPARG with humoral immune response to influenza vaccine. Front Genet 2021;12:725538.
  52. Gutierrez-Bautista JF, Sampedro A, Gomez-Vicente E, et al. HLA class II polymorphism and humoral immunity induced by the SARS-CoV-2 mRNA-1273 vaccine. Vaccines (Basel) 2022;10:402.
  53. Speletas M, Bakaros E, Peristeri AM, et al. The rs1883832 polymorphism (CD40-1C>T) affects the intensity of IgA responses after BNT162b2 vaccination. Int J Mol Sci 2022;23:14056.
  54. Matsumoto A, Hara M, Ashenagar MS, et al. Variant allele of ALDH2, rs671, associates with attenuated postvaccination response in anti-SARS-CoV-2 spike protein IgG: a prospective study in the Japanese general population. Vaccines (Basel) 2022;10:1035.
  55. Zimmermann P, Curtis N. Factors that influence the immune response to vaccination. Clin Microbiol Rev 2019;32:e00084-18.
  56. Siegrist CA. The challenges of vaccine responses in early life: selected examples. J Comp Pathol 2007;137 Suppl 1:S4-9.
  57. Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol 2007;7:379-90.
  58. Voysey M, Kelly DF, Fanshawe TR, et al. The influence of maternally derived antibody and infant age at vaccination on infant vaccine responses: an individual participant meta-analysis. JAMA Pediatr 2017;171:637-46.
  59. Lochlainn LN, de Gier B, van der Maas N, et al. Measles vaccination below 9 months of age: systematic literature review and meta-analyses of effects and safety [Internet]. Bilthoven: National Institute for Public Health and the Environment, Centre for Infectious Disease Control; 2015 [cited 2023 Jun 19]. Available from: https://terrance.who.int/mediacentre/data/sage/SAGE_Docs_Ppt_Oct2015/5_session_measles_and_rubella/Oct2015_session5_MCV_use_at_9months.pdf
  60. Weinberger B, Grubeck-Loebenstein B. Vaccines for the elderly. Clin Microbiol Infect 2012;18 Suppl 5:100-8.
  61. Wagner A, Garner-Spitzer E, Jasinska J, et al. Age-related differences in humoral and cellular immune responses after primary immunisation: indications for stratified vaccination schedules. Sci Rep 2018;8:9825.
  62. Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 2006;24:1159-69.
  63. Wang P, Liu L, Nair MS, et al. SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease. Emerg Microbes Infect 2020;9:2091-3.
  64. Klein SL, Jedlicka A, Pekosz A. The Xs and Y of immune responses to viral vaccines. Lancet Infect Dis 2010;10:338-49.
  65. Trigunaite A, Dimo J, Jorgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol 2015;294:87-94.
  66. Schurz H, Salie M, Tromp G, Hoal EG, Kinnear CJ, Moller M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum Genomics 2019;13:2.
  67. Lotter H, Altfeld M. Sex differences in immunity. Semin Immunopathol 2019;41:133-5.
  68. Calimeri S, Lo Giudice D, Buda A, et al. Role of the 1st booster dose of COVID-19 vaccine in the protection against the infection: a fundamental public health tool. J Prev Med Hyg 2022;63:E520-6.
  69. Kumru S, Godekmerdan A, Yilmaz B. Immune effects of surgical menopause and estrogen replacement therapy in peri-menopausal women. J Reprod Immunol 2004;63:31-8.
  70. Opri R, Veneri D, Mengoli C, Zanoni G. Immune response to hepatitis B vaccine in patients with celiac disease: a systematic review and meta-analysis. Hum Vaccin Immunother 2015;11:2800-5.
  71. Eisenhut M, Chesover A, Misquith R, Nathwani N, Walters A. Antibody responses to immunizations in children with type I diabetes mellitus: a case-control study. Clin Vaccine Immunol 2016;23:873-7.
  72. Kwetkat A, Heppner HJ. Comorbidities in the elderly and their possible influence on vaccine response. Interdiscip Top Gerontol Geriatr 2020;43:73-85.
  73. Frasca D, Blomberg BB. B cell function and influenza vaccine responses in healthy aging and disease. Curr Opin Immunol 2014;29:112-8.
  74. Nath KD, Burel JG, Shankar V, et al. Clinical factors associated with the humoral immune response to influenza vaccination in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2014;9:51-6.
  75. Sanei F, Wilkinson T. Influenza vaccination for patients with chronic obstructive pulmonary disease: understanding immunogenicity, efficacy and effectiveness. Ther Adv Respir Dis 2016;10:349-67.
  76. Wiedermann U, Sitte HH, Burgmann H, et al. Guidelines for vaccination of immunocompromised individuals. Wien Klin Wochenschr 2016;128 Suppl 4:337-76.
  77. Eiselt J, Kielberger L, Rajdl D, Racek J, Pazdiora P, Malanova L. Previous vaccination and age are more important predictors of immune response to influenza vaccine than inflammation and iron status in dialysis patients. Kidney Blood Press Res 2016;41:139-47.
  78. Girndt M, Pietsch M, Kohler H. Tetanus immunization and its association to hepatitis B vaccination in patients with chronic renal failure. Am J Kidney Dis 1995;26:454-60.
  79. Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 diabetes and its impact on the immune system. Curr Diabetes Rev 2020;16:442-9.
  80. Ssentongo P, Ssentongo AE, Heilbrunn ES, Ba DM, Chinchilli VM. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: a systematic review and meta-analysis. PLoS One 2020;15:e0238215.
  81. Boroumand AB, Forouhi M, Karimi F, et al. Immunogenicity of COVID-19 vaccines in patients with diabetes mellitus: a systematic review. Front Immunol 2022;13:940357.
  82. Vollaard A, Schreuder I, Slok-Raijmakers L, Opstelten W, Rimmelzwaan G, Gelderblom H. Influenza vaccination in adult patients with solid tumours treated with chemotherapy. Eur J Cancer 2017;76:134-43.
  83. Monin L, Laing AG, Munoz-Ruiz M, et al. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study. Lancet Oncol 2021;22:765-78.
  84. Wu JT, La J, Branch-Elliman W, et al. Association of COVID-19 vaccination with SARS-CoV-2 infection in patients with cancer: a US Nationwide Veterans Affairs Study. JAMA Oncol 2022;8:281-6.
  85. Ferrara P, Ponticelli D, Aguero F, et al. Does smoking have an impact on the immunological response to COVID-19 vaccines?: evidence from the VASCO study and need for further studies. Public Health 2022;203:97-9.
  86. Qiu F, Liang CL, Liu H, et al. Impacts of cigarette smoking on immune responsiveness: up and down or upside down? Oncotarget 2017;8:268-84.
  87. Namujju PB, Pajunen E, Simen-Kapeu A, et al. Impact of smoking on the quantity and quality of antibodies induced by human papillomavirus type 16 and 18 AS04-adjuvanted virus-like-particle vaccine: a pilot study. BMC Res Notes 2014;7:445.
  88. Yamamoto S, Tanaka A, Ohmagari N, et al. Use of heated tobacco products, moderate alcohol drinking, and antiSARS-CoV-2 IgG antibody titers after BNT162b2 vaccination among Japanese healthcare workers. Prev Med 2022;161:107123.
  89. Messaoudi I, Pasala S, Grant K. Could moderate alcohol intake be recommended to improve vaccine responses? Expert Rev Vaccines 2014;13:817-9.
  90. Alesci A, Nicosia N, Fumia A, Giorgianni F, Santini A, Cicero N. Resveratrol and immune cells: a link to improve human health. Molecules 2022;27:424.
  91. Nieman DC. Exercise is medicine for immune function: implication for COVID-19. Curr Sports Med Rep 2021;20:395-401.
  92. Eskola J, Ruuskanen O, Soppi E, et al. Effect of sport stress on lymphocyte transformation and antibody formation. Clin Exp Immunol 1978;32:339-45.
  93. Kohut ML, Cooper MM, Nickolaus MS, Russell DR, Cunnick JE. Exercise and psychosocial factors modulate immunity to influenza vaccine in elderly individuals. J Gerontol A Biol Sci Med Sci 2002;57:M557-62.
  94. Edwards KM, Booy R. Effects of exercise on vaccine-induced immune responses. Hum Vaccin Immunother 2013;9:907-10.
  95. Barni L, Carrasco-Vega E, Olivieri M, et al. Does physical exercise enhance the immune response after vaccination?: a systematic review for clinical indications of COVID-19 vaccine. Int J Environ Res Public Health 2023;20:5183.
  96. Dicker D, Bettini S, Farpour-Lambert N, et al. Obesity and COVID-19: the two sides of the coin. Obes Facts 2020;13:430-8.
  97. Sheridan PA, Paich HA, Handy J, et al. Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obes (Lond) 2012;36:1072-7.
  98. Lai YJ, Chang HS, Yang YP, et al. The role of micronutrient and immunomodulation effect in the vaccine era of COVID-19. J Chin Med Assoc 2021;84:821-6.
  99. Amimo JO, Michael H, Chepngeno J, Raev SA, Saif LJ, Vlasova AN. Immune impairment associated with vitamin A deficiency: insights from clinical studies and animal model research. Nutrients 2022;14:5038.
  100. Benn CS, Balde A, George E, et al. Effect of vitamin A supplementation on measles-specific antibody levels in Guinea-Bissau. Lancet 2002;359:1313-4.
  101. Church JA, Rukobo S, Govha M, et al. Neonatal vitamin A supplementation and immune responses to oral polio vaccine in Zimbabwean infants. Trans R Soc Trop Med Hyg 2019;113:110-5.
  102. Azrielant S, Shoenfeld Y. Vitamin D and the immune system. Isr Med Assoc J 2017;19:510-1.
  103. Greiller CL, Martineau AR. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients 2015;7:4240-70.
  104. Arababadi MK, Nosratabadi R, Asadikaram G. Vitamin D and toll like receptors. Life Sci 2018;203:105-11.
  105. Ismailova A, White JH. Vitamin D, infections and immunity. Rev Endocr Metab Disord 2022;23:265-77.
  106. Sadarangani SP, Whitaker JA, Poland GA. "Let there be light": the role of vitamin D in the immune response to vaccines. Expert Rev Vaccines 2015;14:1427-40.
  107. Maglione MA, Das L, Raaen L, et al. Safety of vaccines used for routine immunization of U.S. children: a systematic review. Pediatrics 2014;134:325-37.
  108. Schattner A. Consequence or coincidence?: the occurrence, pathogenesis and significance of autoimmune manifestations after viral vaccines. Vaccine 2005;23:3876-86.
  109. Sestili C, Grazina I, La Torre G. HBV vaccine and risk of developing multiple sclerosis: a systematic review and meta-analysis. Hum Vaccin Immunother 2021;17:2273-8.
  110. Salemi S, D'Amelio R. Could autoimmunity be induced by vaccination? Int Rev Immunol 2010;29:247-69.
  111. Ravel G, Christ M, Horand F, Descotes J. Autoimmunity, environmental exposure and vaccination: is there a link? Toxicology 2004;196:211-6.
  112. Martinuc Porobic J, Avcin T, Bozic B, et al. Anti-phospholipid antibodies following vaccination with recombinant hepatitis B vaccine. Clin Exp Immunol 2005;142:377-80.
  113. de Wolf AC, van Aalst S, Ludwig IS, et al. Regulatory T cell frequencies and phenotypes following anti-viral vaccination. PLoS One 2017;12:e0179942.
  114. Belloni C, Avanzini MA, De Silvestri A, et al. No evidence of autoimmunity in 6-year-old children immunized at birth with recombinant hepatitis B vaccine. Pediatrics 2002;110(1 Pt 1):e4.
  115. Desombere I, Willems A, Leroux-Roels G. Response to hepatitis B vaccine: multiple HLA genes are involved. Tissue Antigens 1998;51:593-604.
  116. Muniz-Castrillo S, Vogrig A, Honnorat J. Associations between HLA and autoimmune neurological diseases with autoantibodies. Auto Immun Highlights 2020;11:2.
  117. Miller JD, Whitehair LH. Concurrent HLA-related response factors mediate recombinant hepatitis B vaccine major adverse events. Autoimmunity 2005;38:181-94.
  118. Fourati S, Cristescu R, Loboda A, et al. Pre-vaccination inflammation and B-cell signalling predict age-related hyporesponse to hepatitis B vaccination. Nat Commun 2016;7:10369.
  119. Chen DP, Wen YH, Lin WT, Hsu FP. Association between the side effect induced by COVID-19 vaccines and the immune regulatory gene polymorphism. Front Immunol 2022;13:941497.
  120. Bolze A, Neveux I, Schiabor Barrett KM, et al. HLA-A*03:01 is associated with increased risk of fever, chills, and stronger side effects from Pfizer-BioNTech COVID-19 vaccination. HGG Adv 2022;3:100084.
  121. Feenstra B, Pasternak B, Geller F, et al. Common variants associated with general and MMR vaccine-related febrile seizures. Nat Genet 2014;46:1274-82.
  122. Haralambieva IH, Ovsyannikova IG, Kennedy RB, et al. Genome-wide associations of CD46 and IFI44L genetic variants with neutralizing antibody response to measles vaccine. Hum Genet 2017;136:421-35.
  123. Poyhonen L, Bustamante J, Casanova JL, Jouanguy E, Zhang Q. Life-threatening infections due to live-attenuated vaccines: early manifestations of inborn errors of immunity. J Clin Immunol 2019;39:376-90.
  124. Hur J, Ozgur A, Xiang Z, He Y. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining. J Biomed Semantics 2012;3:18.
  125. Burns C, Cheung A, Stark Z, et al. A novel presentation of homozygous loss-of-function STAT-1 mutation in an infant with hyperinflammation: a case report and review of the literature. J Allergy Clin Immunol Pract 2016;4:777-9.
  126. Moens L, Van Eyck L, Jochmans D, et al. A novel kindred with inherited STAT2 deficiency and severe viral illness. J Allergy Clin Immunol 2017;139:1995-7.
  127. Hernandez N, Bucciol G, Moens L, et al. Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. J Exp Med 2019;216:2057-70.
  128. Duncan CJ, Mohamad SM, Young DF, et al. Human IFNAR2 deficiency: lessons for antiviral immunity. Sci Transl Med 2015;7:307ra154.
  129. Ciancanelli MJ, Huang SX, Luthra P, et al. Infectious disease: life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 2015;348:448-53.
  130. Hernandez N, Melki I, Jing H, et al. Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med 2018;215:2567-85.