Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No., RS-2023-00251145).
References
- Coronado L, Perera CL, Rios L, Frias MT, Perez LJ. A critical review about different vaccines against classical swine fever virus and their repercussions in endemic regions. Vaccines (Basel) 2021;9:154.
- Ganges L, Crooke HR, Bohorquez JA, et al. Classical swine fever virus: the past, present and future. Virus Res 2020;289:198151.
- Postel A, Meyer D, Petrov A, Becher P. Recent emergence of a novel porcine pestivirus: interference with classical swine fever diagnosis? Emerg Microbes Infect 2017;6:e19.
- Smith DB, Meyers G, Bukh J, et al. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J Gen Virol 2017;98:2106-12. https://doi.org/10.1099/jgv.0.000873
- Blome S, Staubach C, Henke J, Carlson J, Beer M. Classical swine fever: an updated review. Viruses 2017;9:86.
- Ji W, Guo Z, Ding NZ, He CQ. Studying classical swine fever virus: making the best of a bad virus. Virus Res 2015;197:35-47. https://doi.org/10.1016/j.virusres.2014.12.006
- Tautz N, Tews BA, Meyers G. The molecular biology of pestiviruses. Adv Virus Res 2015;93:47-160. https://doi.org/10.1016/bs.aivir.2015.03.002
- Paton DJ, McGoldrick A, Greiser-Wilke I, et al. Genetic typing of classical swine fever virus. Vet Microbiol 2000;73:137-57. https://doi.org/10.1016/S0378-1135(00)00141-3
- Postel A, Schmeiser S, Perera CL, Rodriguez LJ, Frias-Lepoureau MT, Becher P. Classical swine fever virus isolates from Cuba form a new subgenotype 1.4. Vet Microbiol 2013;161:334-8. https://doi.org/10.1016/j.vetmic.2012.07.045
- Fan J, Liao Y, Zhang M, et al. Anti-classical swine fever virus strategies. Microorganisms 2021;9:761.
- World Organisation for Animal Health. Official disease status: classical swine fever [Internet]. Paris: WOAH; 2021 [cited 2023 Dec 15]. Available from: https://www.woah.org/en/disease/classical-swine-fever
- Postel A, Austermann-Busch S, Petrov A, Moennig V, Becher P. Epidemiology, diagnosis and control of classical swine fever: recent developments and future challenges. Transbound Emerg Dis 2018;65 Suppl 1:248-61. https://doi.org/10.1111/tbed.12676
- Wei Q, Liu Y, Zhang G. Research progress and challenges in vaccine development against classical swine fever virus. Viruses 2021;13:445.
- Kim B, Song JY, Tark DS, et al. Feed contaminated with classical swine fever vaccine virus (LOM strain) can induce antibodies to the virus in pigs. Vet Rec 2008;162:12-7. https://doi.org/10.1136/vr.162.1.12
- Song JY, Lim SI, Jeoung HY, et al. Prevalence of classical swine fever virus in domestic pigs in South Korea: 1999-2011. Transbound Emerg Dis 2013;60:546-51. https://doi.org/10.1111/j.1865-1682.2012.01371.x
- Yoo SJ, Kwon T, Kang K, et al. Genetic evolution of classical swine fever virus under immune environments conditioned by genotype 1-based modified live virus vaccine. Transbound Emerg Dis 2018;65:735-45. https://doi.org/10.1111/tbed.12798
- Choe S, Kim JH, Kim KS, et al. Impact of a live attenuated classical swine fever virus introduced to Jeju Island, a CSF-free area. Pathogens 2019;8:251.
- Jang G, Kim JA, Kang WM, et al. Endemic outbreaks due to the re-emergence of classical swine fever after accidental introduction of modified live LOM vaccine on Jeju Island, South Korea. Transbound Emerg Dis 2019;66:634-9. https://doi.org/10.1111/tbed.13121
- Je SH, Kwon T, Yoo SJ, et al. Classical swine fever outbreak after modified live LOM strain vaccination in naive pigs, South Korea. Emerg Infect Dis 2018;24:798-800. https://doi.org/10.3201/eid2404.171319
- Jang G, Kim EJ, Cho SC, et al. Field evaluation of the safety and immunogenicity of a classical swine fever virus E2 subunit vaccine in breeding and nursery animals on Jeju Island, South Korea. Clin Exp Vaccine Res 2022;11:264-73. https://doi.org/10.7774/cevr.2022.11.3.264
- Jang G, Kim JA, Yoo H, et al. Genomic characterization of classical swine fever virus LOM variants with 3'-UTR INDELs from pigs on Jeju Island, SouthKorea.ArchVirol 2020;165:1691-6.
- Hulst MM, Westra DF, Wensvoort G, Moormann RJ. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. J Virol 1993;67:5435-42. https://doi.org/10.1128/jvi.67.9.5435-5442.1993
- Chen JY, Wu CM, Chen ZW, et al. Evaluation of classical swine fever E2 (CSF-E2) subunit vaccine efficacy in the prevention of virus transmission and impact of maternal derived antibody interference in field farm applications. Porcine Health Manag 2021;7:9.
- Depner KR, Bouma A, Koenen F, et al. Classical swine fever (CSF) marker vaccine. Trial II. Challenge study in pregnant sows. Vet Microbiol 2001;83:107-20. https://doi.org/10.1016/S0378-1135(01)00410-2
- de Smit AJ, Bouma A, de Kluijver EP, Terpstra C, Moormann RJ. Duration of the protection of an E2 subunit marker vaccine against classical swine fever after a single vaccination. Vet Microbiol 2001;78:307-17. https://doi.org/10.1016/S0378-1135(00)00306-0
- Drew T. Classical swine fever (hog cholera). In: Office International des Epizooties, editor. Manual of diagnostic tests and vaccines for terrestrial animals: mammals, birds and bees. 6th ed. Paris: Office International des Epizooties; 2008. p. 1092-106.
- Wee SH, Park CK, Jeong JM, et al. Outbreaks of classical swine fever in the Republic of Korea in 2003. Vet Rec 2005;157:113-5. https://doi.org/10.1136/vr.157.4.113