DOI QR코드

DOI QR Code

Humanized mouse model for vaccine evaluation: an overview

  • Received : 2023.09.20
  • Accepted : 2023.12.21
  • Published : 2024.01.31

Abstract

Animal models are essential in medical research for testing drugs and vaccines. These models differ from humans in various respects, so their results are not directly translatable in humans. To address this issue, humanized mice engrafted with functional human cells or tissue can be helpful. We propose using humanized mice that support the engraftment of human hematopoietic stem cells (HSCs) without irradiation to evaluate vaccines that influence patient immunity. For infectious diseases, several types of antigens and adjuvants have been developed and evaluated for vaccination. Peptide vaccines are generally used for their capability to fight cancer and infectious diseases. Evaluation of adjuvants is necessary as they induce inflammation, which is effective for an enhanced immune response but causes adverse effects in some individuals. A trial can be done on humanized mice to check the immunogenicity of a particular adjuvant and peptide combination. Messenger RNA has also emerged as a potential vaccine against viruses. These vaccines need to be tested with human immune cells because they work by producing a particular peptide of the pathogen. Humanized mice with human HSCs that can produce both myeloid and lymphoid cells show a similar immune response that these vaccines will produce in a patient.

Keywords

References

  1. Ghosn S, Chamat S, Prieur E, Stephan A, Druilhe P, Bouharoun-Tayoun H. Evaluating human immune responses for vaccine development in a novel human spleen cell-engrafted NOD-SCID-IL2rγNull mouse model. Front Immunol 2018;9:601.
  2. Akkina R. Human immune responses and potential for vaccine assessment in humanized mice. Curr Opin Immunol 2013;25:403-9. https://doi.org/10.1016/j.coi.2013.03.009
  3. Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol 2012;9:1319-30. https://doi.org/10.4161/rna.22269
  4. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines: a new era in vaccinology. Nat Rev Drug Discov 2018;17:261-79. https://doi.org/10.1038/nrd.2017.243
  5. Petsch B, Schnee M, Vogel AB, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 2012;30:1210-6. https://doi.org/10.1038/nbt.2436
  6. Pardi N, Hogan MJ, Pelc RS, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017;543:248-51. https://doi.org/10.1038/nature21428
  7. Benteyn D, Heirman C, Bonehill A, Thielemans K, Breckpot K. mRNA-based dendritic cell vaccines. Expert Rev Vaccines 2015;14:161-76. https://doi.org/10.1586/14760584.2014.957684
  8. Leibman RS, Richardson MW, Ellebrecht CT, et al. Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathog 2017;13:e1006613.
  9. Danner R, Chaudhari SN, Rosenberger J, et al. Expression of HLA class II molecules in humanized NOD.Rag1KO.IL-2RgcKO mice is critical for development and function of human T and B cells. PLoS One 2011;6:e19826. https://doi.org/10.1371/journal.pone.0019826
  10. Melkus MW, Estes JD, Padgett-Thomas A, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 2006;12:1316-22. https://doi.org/10.1038/nm1431
  11. Bahl K, Senn JJ, Yuzhakov O, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther 2017;25:1316-27. https://doi.org/10.1016/j.ymthe.2017.03.035
  12. Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 2017;390:1511-20. https://doi.org/10.1016/S0140-6736(17)31665-3
  13. Brumeanu TD, Vir P, Karim AF, et al. A Human-Immune-System (HIS) humanized mouse model (DRAGA: HLA-A2. HLA-DR4. Rag1 KO.IL-2Rγc KO. NOD) for COVID-19. bioRxiv [Preprint] 2021 Jan 29. https://doi.org/10.1101/2020.08.19.251249
  14. Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide vaccine: progress and challenges. Vaccines (Basel) 2014;2:515-36. https://doi.org/10.3390/vaccines2030515
  15. Bijker MS, Melief CJ, Offringa R, van der Burg SH. Design and development of synthetic peptide vaccines: past, present and future. Expert Rev Vaccines 2007;6:591-603. https://doi.org/10.1586/14760584.6.4.591
  16. Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 2007;6:404-14. https://doi.org/10.1038/nrd2224
  17. Aguilar JC, Rodriguez EG. Vaccine adjuvants revisited. Vaccine 2007;25:3752-62. https://doi.org/10.1016/j.vaccine.2007.01.111
  18. Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics 2015;67:641-50. https://doi.org/10.1007/s00251-015-0873-y
  19. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 2016;32:511-7. https://doi.org/10.1093/bioinformatics/btv639
  20. Rasmussen M, Fenoy E, Harndahl M, et al. Pan-specific prediction of peptide-MHC class I complex stability, a correlate of T cell immunogenicity. J Immunol 2016;197:1517-24. https://doi.org/10.4049/jimmunol.1600582
  21. Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: current progress and future challenges. Chem Rev 2020;120:3210-29. https://doi.org/10.1021/acs.chemrev.9b00472
  22. Verreault D, Ennis J, Whaley K, et al. Effective treatment of staphylococcal enterotoxin B aerosol intoxication in rhesus macaques by using two parenterally administered high-affinity monoclonal antibodies. Antimicrob Agents Chemother 2019;63:e02049-18.
  23. Pohl MA, Rivera J, Nakouzi A, Chow SK, Casadevall A. Combinations of monoclonal antibodies to anthrax toxin manifest new properties in neutralization assays. Infect Immun 2013;81:1880-8. https://doi.org/10.1128/IAI.01328-12
  24. Arunachalam B, Ghosh S, Talwar GP, Raghupathy R. A single human monoclonal antibody that confers total protection from tetanus. Hybridoma 1992;11:165-79. https://doi.org/10.1089/hyb.1992.11.165
  25. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015;161:205-14. https://doi.org/10.1016/j.cell.2015.03.030
  26. Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 1996;384:134-41. https://doi.org/10.1038/384134a0
  27. Yang JC, Rosenberg SA. Adoptive T-cell therapy for cancer. Adv Immunol 2016;130:279-94. https://doi.org/10.1016/bs.ai.2015.12.006
  28. Chianese-Bullock KA, Irvin WP Jr, Petroni GR, et al. A multipeptide vaccine is safe and elicits T-cell responses in participants with advanced stage ovarian cancer. J Immunother 2008;31:420-30. https://doi.org/10.1097/CJI.0b013e31816dad10
  29. Kametani Y, Miyamoto A, Seki T, Ito R, Habu S, Tokuda Y. Significance of humanized mouse models for evaluating humoral immune response against cancer vaccines. Pers Med Universe 2018;7:13-8. https://doi.org/10.1016/j.pmu.2018.04.002
  30. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012;12:786-98. https://doi.org/10.1038/nri3311
  31. Rongvaux A, Takizawa H, Strowig T, et al. Human hematolymphoid system mice: current use and future potential for medicine. Annu Rev Immunol 2013;31:635-74. https://doi.org/10.1146/annurev-immunol-032712-095921
  32. Traggiai E, Chicha L, Mazzucchelli L, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004;304:104-7. https://doi.org/10.1126/science.1093933
  33. Saito Y, Ellegast JM, Manz MG. Generation of humanized mice for analysis of human dendritic cells. Methods Mol Biol 2016;1423:309-20. https://doi.org/10.1007/978-1-4939-3606-9_22
  34. Villaudy J, Schotte R, Legrand N, Spits H. Critical assessment of human antibody generation in humanized mouse models. J Immunol Methods 2014;410:18-27. https://doi.org/10.1016/j.jim.2014.06.010
  35. Abeynaike S, Paust S. Humanized mice for the evaluation of novel HIV-1 therapies. Front Immunol 2021;12:636775.
  36. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988;241:1632-9. https://doi.org/10.1126/science.2971269
  37. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968;2:1366-9. https://doi.org/10.1016/S0140-6736(68)92673-1
  38. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983;301:527-30. https://doi.org/10.1038/301527a0
  39. Fulop GM, Phillips RA. Full reconstitution of the immune deficiency in scid mice with normal stem cells requires low-dose irradiation of the recipients. J Immunol 1986;136:4438-43. https://doi.org/10.4049/jimmunol.136.12.4438
  40. Namikawa R, Weilbaecher KN, Kaneshima H, Yee EJ, McCune JM. Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med 1990;172:1055-63. https://doi.org/10.1084/jem.172.4.1055
  41. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988;335:256-9. https://doi.org/10.1038/335256a0
  42. Rizza P, Santini SM, Logozzi MA, et al. T-cell dysfunctions in hu-PBL-SCID mice infected with human immunodeficiency virus (HIV) shortly after reconstitution: in vivo effects of HIV on highly activated human immune cells. J Virol 1996;70:7958-64. https://doi.org/10.1128/jvi.70.11.7958-7964.1996
  43. Mosier DE. Human xenograft models for virus infection. Virology 2000;271:215-9. https://doi.org/10.1006/viro.2000.0336
  44. Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 1980;29:1-13.
  45. Leiter EH, Serreze DV, Prochazka M. The genetics and epidemiology of diabetes in NOD mice. Immunol Today 1990;11:147-9. https://doi.org/10.1016/0167-5699(90)90057-G
  46. Cao X, Shores EW, Hu-Li J, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 1995;2:223-38. https://doi.org/10.1016/1074-7613(95)90047-0
  47. Christianson SW, Greiner DL, Schweitzer IB, et al. Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cell Immunol 1996;171:186-99. https://doi.org/10.1006/cimm.1996.0193
  48. Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD. High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis 1995;172:974-82. https://doi.org/10.1093/infdis/172.4.974
  49. van Rijn RS, Simonetti ER, Hagenbeek A, et al. A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2-/- gammac-/- double-mutant mice. Blood 2003;102:2522-31. https://doi.org/10.1182/blood-2002-10-3241
  50. Ali N, Flutter B, Sanchez Rodriguez R, et al. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype. PLoS One 2012;7:e44219.
  51. Torbett BE, Picchio G, Mosier DE. hu-PBL-SCID mice: a model for human immune function, AIDS, and lymphomagenesis. Immunol Rev 1991;124:139-64. https://doi.org/10.1111/j.1600-065X.1991.tb00620.x
  52. Ifversen P, Borrebaeck CA. SCID-hu-PBL: a model for making human antibodies? Semin Immunol 1996;8:243-8. https://doi.org/10.1006/smim.1996.0030
  53. Murphy WJ, Taub DD, Longo DL. The huPBL-SCID mouse as a means to examine human immune function in vivo. Semin Immunol 1996;8:233-41. https://doi.org/10.1006/smim.1996.0029
  54. Mutis T, van Rijn RS, Simonetti ER, et al. Human regulatory T cells control xenogeneic graft-versus-host disease induced by autologous T cells in RAG2-/-gammac-/- immunodeficient mice. Clin Cancer Res 2006;12:5520-5. https://doi.org/10.1158/1078-0432.CCR-06-0035
  55. Gregoire-Gauthier J, Durrieu L, Duval A, et al. Use of immunoglobulins in the prevention of GvHD in a xenogeneic NOD/SCID/γc- mouse model. Bone Marrow Transplant 2012;47:439-50. https://doi.org/10.1038/bmt.2011.93
  56. Kamel-Reid S, Dick JE. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 1988; 242:1706-9. https://doi.org/10.1126/science.2904703
  57. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992;255:1137-41. https://doi.org/10.1126/science.1372131
  58. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 1984;133:157-65. https://doi.org/10.4049/jimmunol.133.1.157
  59. Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 1989;74:1563-70. https://doi.org/10.1182/blood.V74.5.1563.1563
  60. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 1997;94:5320-5. https://doi.org/10.1073/pnas.94.10.5320
  61. Holyoake TL, Nicolini FE, Eaves CJ. Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp Hematol 1999;27:1418-27. https://doi.org/10.1016/S0301-472X(99)00078-8
  62. Larochelle A, Vormoor J, Hanenberg H, et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996;2:1329-37. https://doi.org/10.1038/nm1296-1329
  63. Ueda T, Yoshino H, Kobayashi K, et al. Hematopoietic repopulating ability of cord blood CD34(+) cells in NOD/Shi-scid mice. Stem Cells 2000;18:204-13. https://doi.org/10.1634/stemcells.18-3-204
  64. Yahata T, Ando K, Nakamura Y, et al. Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor gamma null mice. J Immunol 2002;169:204-9. https://doi.org/10.4049/jimmunol.169.1.204
  65. Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005;174:6477-89. https://doi.org/10.4049/jimmunol.174.10.6477
  66. Hiramatsu H, Nishikomori R, Heike T, et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood 2003;102:873-80. https://doi.org/10.1182/blood-2002-09-2755
  67. McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 2010;116:193-200. https://doi.org/10.1182/blood-2010-02-271841
  68. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 2006;108:487-92. https://doi.org/10.1182/blood-2005-11-4388
  69. Brainard DM, Seung E, Frahm N, et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 2009;83:7305-21. https://doi.org/10.1128/JVI.02207-08
  70. Denton PW, Nochi T, Lim A, et al. IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice. Mucosal Immunol 2012;5:555-66. https://doi.org/10.1038/mi.2012.31
  71. Smith DJ, Lin LJ, Moon H, et al. Propagating humanized BLT mice for the study of human immunology and immunotherapy. Stem Cells Dev 2016;25:1863-73. https://doi.org/10.1089/scd.2016.0193
  72. Nikzad R, Angelo LS, Aviles-Padilla K, et al. Human natural killer cells mediate adaptive immunity to viral antigens. Sci Immunol 2019;4:eaat8116.
  73. Denton PW, Estes JD, Sun Z, et al. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med 2008;5:e16.
  74. Sun Z, Denton PW, Estes JD, et al. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 2007;204:705-14. https://doi.org/10.1084/jem.20062411
  75. Stoddart CA, Maidji E, Galkina SA, et al. Superior human leukocyte reconstitution and susceptibility to vaginal HIV transmission in humanized NOD-scid IL-2Rγ(-/-) (NSG) BLT mice. Virology 2011;417:154-60. https://doi.org/10.1016/j.virol.2011.05.013
  76. Kametani Y, Katano I, Miyamoto A, et al. NOG-hIL-4-Tg, a new humanized mouse model for producing tumor antigen-specific IgG antibody by peptide vaccination. PLoS One 2017;12:e0179239.