References
- Ghosn S, Chamat S, Prieur E, Stephan A, Druilhe P, Bouharoun-Tayoun H. Evaluating human immune responses for vaccine development in a novel human spleen cell-engrafted NOD-SCID-IL2rγNull mouse model. Front Immunol 2018;9:601.
- Akkina R. Human immune responses and potential for vaccine assessment in humanized mice. Curr Opin Immunol 2013;25:403-9. https://doi.org/10.1016/j.coi.2013.03.009
- Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol 2012;9:1319-30. https://doi.org/10.4161/rna.22269
- Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines: a new era in vaccinology. Nat Rev Drug Discov 2018;17:261-79. https://doi.org/10.1038/nrd.2017.243
- Petsch B, Schnee M, Vogel AB, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 2012;30:1210-6. https://doi.org/10.1038/nbt.2436
- Pardi N, Hogan MJ, Pelc RS, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017;543:248-51. https://doi.org/10.1038/nature21428
- Benteyn D, Heirman C, Bonehill A, Thielemans K, Breckpot K. mRNA-based dendritic cell vaccines. Expert Rev Vaccines 2015;14:161-76. https://doi.org/10.1586/14760584.2014.957684
- Leibman RS, Richardson MW, Ellebrecht CT, et al. Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathog 2017;13:e1006613.
- Danner R, Chaudhari SN, Rosenberger J, et al. Expression of HLA class II molecules in humanized NOD.Rag1KO.IL-2RgcKO mice is critical for development and function of human T and B cells. PLoS One 2011;6:e19826. https://doi.org/10.1371/journal.pone.0019826
- Melkus MW, Estes JD, Padgett-Thomas A, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 2006;12:1316-22. https://doi.org/10.1038/nm1431
- Bahl K, Senn JJ, Yuzhakov O, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther 2017;25:1316-27. https://doi.org/10.1016/j.ymthe.2017.03.035
- Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 2017;390:1511-20. https://doi.org/10.1016/S0140-6736(17)31665-3
- Brumeanu TD, Vir P, Karim AF, et al. A Human-Immune-System (HIS) humanized mouse model (DRAGA: HLA-A2. HLA-DR4. Rag1 KO.IL-2Rγc KO. NOD) for COVID-19. bioRxiv [Preprint] 2021 Jan 29. https://doi.org/10.1101/2020.08.19.251249
- Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide vaccine: progress and challenges. Vaccines (Basel) 2014;2:515-36. https://doi.org/10.3390/vaccines2030515
- Bijker MS, Melief CJ, Offringa R, van der Burg SH. Design and development of synthetic peptide vaccines: past, present and future. Expert Rev Vaccines 2007;6:591-603. https://doi.org/10.1586/14760584.6.4.591
- Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 2007;6:404-14. https://doi.org/10.1038/nrd2224
- Aguilar JC, Rodriguez EG. Vaccine adjuvants revisited. Vaccine 2007;25:3752-62. https://doi.org/10.1016/j.vaccine.2007.01.111
- Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics 2015;67:641-50. https://doi.org/10.1007/s00251-015-0873-y
- Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 2016;32:511-7. https://doi.org/10.1093/bioinformatics/btv639
- Rasmussen M, Fenoy E, Harndahl M, et al. Pan-specific prediction of peptide-MHC class I complex stability, a correlate of T cell immunogenicity. J Immunol 2016;197:1517-24. https://doi.org/10.4049/jimmunol.1600582
- Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: current progress and future challenges. Chem Rev 2020;120:3210-29. https://doi.org/10.1021/acs.chemrev.9b00472
- Verreault D, Ennis J, Whaley K, et al. Effective treatment of staphylococcal enterotoxin B aerosol intoxication in rhesus macaques by using two parenterally administered high-affinity monoclonal antibodies. Antimicrob Agents Chemother 2019;63:e02049-18.
- Pohl MA, Rivera J, Nakouzi A, Chow SK, Casadevall A. Combinations of monoclonal antibodies to anthrax toxin manifest new properties in neutralization assays. Infect Immun 2013;81:1880-8. https://doi.org/10.1128/IAI.01328-12
- Arunachalam B, Ghosh S, Talwar GP, Raghupathy R. A single human monoclonal antibody that confers total protection from tetanus. Hybridoma 1992;11:165-79. https://doi.org/10.1089/hyb.1992.11.165
- Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015;161:205-14. https://doi.org/10.1016/j.cell.2015.03.030
- Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 1996;384:134-41. https://doi.org/10.1038/384134a0
- Yang JC, Rosenberg SA. Adoptive T-cell therapy for cancer. Adv Immunol 2016;130:279-94. https://doi.org/10.1016/bs.ai.2015.12.006
- Chianese-Bullock KA, Irvin WP Jr, Petroni GR, et al. A multipeptide vaccine is safe and elicits T-cell responses in participants with advanced stage ovarian cancer. J Immunother 2008;31:420-30. https://doi.org/10.1097/CJI.0b013e31816dad10
- Kametani Y, Miyamoto A, Seki T, Ito R, Habu S, Tokuda Y. Significance of humanized mouse models for evaluating humoral immune response against cancer vaccines. Pers Med Universe 2018;7:13-8. https://doi.org/10.1016/j.pmu.2018.04.002
- Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012;12:786-98. https://doi.org/10.1038/nri3311
- Rongvaux A, Takizawa H, Strowig T, et al. Human hematolymphoid system mice: current use and future potential for medicine. Annu Rev Immunol 2013;31:635-74. https://doi.org/10.1146/annurev-immunol-032712-095921
- Traggiai E, Chicha L, Mazzucchelli L, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004;304:104-7. https://doi.org/10.1126/science.1093933
- Saito Y, Ellegast JM, Manz MG. Generation of humanized mice for analysis of human dendritic cells. Methods Mol Biol 2016;1423:309-20. https://doi.org/10.1007/978-1-4939-3606-9_22
- Villaudy J, Schotte R, Legrand N, Spits H. Critical assessment of human antibody generation in humanized mouse models. J Immunol Methods 2014;410:18-27. https://doi.org/10.1016/j.jim.2014.06.010
- Abeynaike S, Paust S. Humanized mice for the evaluation of novel HIV-1 therapies. Front Immunol 2021;12:636775.
- McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988;241:1632-9. https://doi.org/10.1126/science.2971269
- Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968;2:1366-9. https://doi.org/10.1016/S0140-6736(68)92673-1
- Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983;301:527-30. https://doi.org/10.1038/301527a0
- Fulop GM, Phillips RA. Full reconstitution of the immune deficiency in scid mice with normal stem cells requires low-dose irradiation of the recipients. J Immunol 1986;136:4438-43. https://doi.org/10.4049/jimmunol.136.12.4438
- Namikawa R, Weilbaecher KN, Kaneshima H, Yee EJ, McCune JM. Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med 1990;172:1055-63. https://doi.org/10.1084/jem.172.4.1055
- Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988;335:256-9. https://doi.org/10.1038/335256a0
- Rizza P, Santini SM, Logozzi MA, et al. T-cell dysfunctions in hu-PBL-SCID mice infected with human immunodeficiency virus (HIV) shortly after reconstitution: in vivo effects of HIV on highly activated human immune cells. J Virol 1996;70:7958-64. https://doi.org/10.1128/jvi.70.11.7958-7964.1996
- Mosier DE. Human xenograft models for virus infection. Virology 2000;271:215-9. https://doi.org/10.1006/viro.2000.0336
- Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 1980;29:1-13.
- Leiter EH, Serreze DV, Prochazka M. The genetics and epidemiology of diabetes in NOD mice. Immunol Today 1990;11:147-9. https://doi.org/10.1016/0167-5699(90)90057-G
- Cao X, Shores EW, Hu-Li J, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 1995;2:223-38. https://doi.org/10.1016/1074-7613(95)90047-0
- Christianson SW, Greiner DL, Schweitzer IB, et al. Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cell Immunol 1996;171:186-99. https://doi.org/10.1006/cimm.1996.0193
- Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD. High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis 1995;172:974-82. https://doi.org/10.1093/infdis/172.4.974
- van Rijn RS, Simonetti ER, Hagenbeek A, et al. A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2-/- gammac-/- double-mutant mice. Blood 2003;102:2522-31. https://doi.org/10.1182/blood-2002-10-3241
- Ali N, Flutter B, Sanchez Rodriguez R, et al. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype. PLoS One 2012;7:e44219.
- Torbett BE, Picchio G, Mosier DE. hu-PBL-SCID mice: a model for human immune function, AIDS, and lymphomagenesis. Immunol Rev 1991;124:139-64. https://doi.org/10.1111/j.1600-065X.1991.tb00620.x
- Ifversen P, Borrebaeck CA. SCID-hu-PBL: a model for making human antibodies? Semin Immunol 1996;8:243-8. https://doi.org/10.1006/smim.1996.0030
- Murphy WJ, Taub DD, Longo DL. The huPBL-SCID mouse as a means to examine human immune function in vivo. Semin Immunol 1996;8:233-41. https://doi.org/10.1006/smim.1996.0029
- Mutis T, van Rijn RS, Simonetti ER, et al. Human regulatory T cells control xenogeneic graft-versus-host disease induced by autologous T cells in RAG2-/-gammac-/- immunodeficient mice. Clin Cancer Res 2006;12:5520-5. https://doi.org/10.1158/1078-0432.CCR-06-0035
- Gregoire-Gauthier J, Durrieu L, Duval A, et al. Use of immunoglobulins in the prevention of GvHD in a xenogeneic NOD/SCID/γc- mouse model. Bone Marrow Transplant 2012;47:439-50. https://doi.org/10.1038/bmt.2011.93
- Kamel-Reid S, Dick JE. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 1988; 242:1706-9. https://doi.org/10.1126/science.2904703
- Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992;255:1137-41. https://doi.org/10.1126/science.1372131
- Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 1984;133:157-65. https://doi.org/10.4049/jimmunol.133.1.157
- Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 1989;74:1563-70. https://doi.org/10.1182/blood.V74.5.1563.1563
- Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 1997;94:5320-5. https://doi.org/10.1073/pnas.94.10.5320
- Holyoake TL, Nicolini FE, Eaves CJ. Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp Hematol 1999;27:1418-27. https://doi.org/10.1016/S0301-472X(99)00078-8
- Larochelle A, Vormoor J, Hanenberg H, et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996;2:1329-37. https://doi.org/10.1038/nm1296-1329
- Ueda T, Yoshino H, Kobayashi K, et al. Hematopoietic repopulating ability of cord blood CD34(+) cells in NOD/Shi-scid mice. Stem Cells 2000;18:204-13. https://doi.org/10.1634/stemcells.18-3-204
- Yahata T, Ando K, Nakamura Y, et al. Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor gamma null mice. J Immunol 2002;169:204-9. https://doi.org/10.4049/jimmunol.169.1.204
- Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005;174:6477-89. https://doi.org/10.4049/jimmunol.174.10.6477
- Hiramatsu H, Nishikomori R, Heike T, et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood 2003;102:873-80. https://doi.org/10.1182/blood-2002-09-2755
- McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 2010;116:193-200. https://doi.org/10.1182/blood-2010-02-271841
- Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 2006;108:487-92. https://doi.org/10.1182/blood-2005-11-4388
- Brainard DM, Seung E, Frahm N, et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 2009;83:7305-21. https://doi.org/10.1128/JVI.02207-08
- Denton PW, Nochi T, Lim A, et al. IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice. Mucosal Immunol 2012;5:555-66. https://doi.org/10.1038/mi.2012.31
- Smith DJ, Lin LJ, Moon H, et al. Propagating humanized BLT mice for the study of human immunology and immunotherapy. Stem Cells Dev 2016;25:1863-73. https://doi.org/10.1089/scd.2016.0193
- Nikzad R, Angelo LS, Aviles-Padilla K, et al. Human natural killer cells mediate adaptive immunity to viral antigens. Sci Immunol 2019;4:eaat8116.
- Denton PW, Estes JD, Sun Z, et al. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med 2008;5:e16.
- Sun Z, Denton PW, Estes JD, et al. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 2007;204:705-14. https://doi.org/10.1084/jem.20062411
- Stoddart CA, Maidji E, Galkina SA, et al. Superior human leukocyte reconstitution and susceptibility to vaginal HIV transmission in humanized NOD-scid IL-2Rγ(-/-) (NSG) BLT mice. Virology 2011;417:154-60. https://doi.org/10.1016/j.virol.2011.05.013
- Kametani Y, Katano I, Miyamoto A, et al. NOG-hIL-4-Tg, a new humanized mouse model for producing tumor antigen-specific IgG antibody by peptide vaccination. PLoS One 2017;12:e0179239.