DOI QR코드

DOI QR Code

Operating condition optimization of liquid metal heat pipe using deep learning based genetic algorithm: Heat transfer performance

  • Ik Jae Jin (Department of Nuclear Engineering Ulsan National Institute of Science and Technology (UNIST)) ;
  • Dong Hun Lee (Department of Nuclear Engineering Ulsan National Institute of Science and Technology (UNIST)) ;
  • In Cheol Bang (Department of Nuclear Engineering Ulsan National Institute of Science and Technology (UNIST))
  • 투고 : 2023.09.25
  • 심사 : 2024.02.10
  • 발행 : 2024.07.25

초록

Liquid metal heat pipes play a critical role in various high-temperature applications, with their optimization being pivotal to achieving optimal thermal performance. In this study, a deep learning based genetic algorithm is suggested to optimize the operating conditions of liquid metal heat pipes. The optimization performance was investigated in both single and multi-variable optimization schemes, considering the operating conditions of heat load, inclination angle, and filling ratio. The single-variable optimization indicated reasonable performance for various conditions, reinforcing the potential applicability of the optimization method across a broad spectrum of high-temperature industries. The multi-variable optimization revealed an almost congruent performance level to single-variable optimization, suggesting that the robustness of optimization method is not compromised with additional variables. Furthermore, the generalization performance of the optimization method was investigated by conducting an experimental investigation, proving a similar performance. This study underlines the potential of optimizing the operating condition of heat pipes, with significant consequences in sectors such as high temperature field, thereby offering a pathway to more efficient, cost-effective thermal solutions.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (no. 2021M2D2A1A03048950).

참고문헌

  1. K.M. Kim, Y.S. Jeong, I.C. Bang, Thermal analysis of lithium ion battery-equipped smartphone explosions, Engineering Science and Technology, an International Journal 22 (2) (2019) 610-617.
  2. X. Tang, Z. Quan, Y. Zhao, Experimental investigation of solar panel cooling by a novel micro heat pipe array, Energy Power Eng. 2 (3) (2010) 171-174.
  3. K.M. Kim, I.C. Bang, Heat transfer characteristics and operation limit of pressurized hybrid heat pipe for small modular reactors, Appl. Therm. Eng. 112 (2017) 560-571.
  4. I.G. Kim, I.C. Bang, Spent nuclear fuel with a hybrid heat pipe for electricity generation and thermal management, Energy Convers. Manag. 173 (2018) 233-243.
  5. C. Wang, J. Chen, S. Qiu, W. Tian, D. Zhang, G.H. Su, Performance analysis of heat pipe radiator unit for space nuclear power reactor, Ann. Nucl. Energy 103 (2017) 74-84.
  6. J.Y. Kim, Y.Y. Park, I.C. Bang, Performance analysis of heat pipe-based passive incore decay heat removal system for the small modular reactor design with MARSKS code, Ann. Nucl. Energy 194 (2023) 110091.
  7. K.M. Kim, Y.S. Jeong, I.G. Kim, I.C. Bang, Development of passive in-core cooling system for nuclear safety using hybrid heat pipe, Nucl. Technol. 196 (3) (2016) 598-613.
  8. D.I. Poston, The heatpipe-operated Mars exploration reactor (HOMER), AIP Conf. Proc. 552 (No. 1) (2001, February) 797-804. American Institute of Physics.
  9. M.S. El-Genk, J.M.P. Tournier, "SAIRS"-scalable Amtec integrated reactor space power system, Prog. Nucl. Energy 45 (1) (2004) 25-69.
  10. M.S. El-Genk, J.M. Tournier, Performance analysis of potassium heat pipes radiator for HP-STMCs space reactor power system, AIP Conf. Proc. 699 (No. 1) (2004, February) 793-805. American Institute of Physics.
  11. A. Bushman, D.M. Carpenter, T.S. Ellis, S.P. Gallagher, M.C. Hershcovitch, M. C. Hine, M.A. Stawicki, The Martian Surface Reactor: an Advanced Nuclear Power Station for Manned Extraterrestrial Exploration, MIT-NSA-TR-003, 2004.
  12. D. Palac, M. Gibson, L. Mason, M. Houts, P. McClure, R. Robinson, Nuclear Systems Kilopower Overview (No. GRC-E-DAA-TN29740), 2016.
  13. P.R. Mcclure, D.I. Poston, V.R. Dasari, R.S. Reid, Design of Megawatt Power Level Heat Pipe Reactors, Report of Los Alamos National Laboratory, USA, 2015.
  14. A. Levinsky, J.J. van Wyk, Y. Arafat, M.C. Smith, Westinghouse eVinci reactor for off-grid markets, Transactions 119 (1) (2018) 931-934.
  15. H. Yang, C. Wang, D. Zhang, J. Zhang, W. Tian, S. Qiu, G.H. Su, Parameter sensitivity study on startup characteristics of high temperature potassium heat pipe, Nucl. Eng. Des. 392 (2022) 111754.
  16. H. Sun, X. Liu, H. Liao, C. Wang, J. Zhang, W. Tian, S. Qiu, G. Su, Experiment study on thermal behavior of a horizontal high-temperature heat pipe under motion conditions, Ann. Nucl. Energy 165 (2022) 108760.
  17. Z. Tian, J. Zhang, C. Wang, K. Guo, Y. Liu, D. Zhang, W. Tian, S. Qiu, G.H. Su, Experimental evaluation on heat transfer limits of sodium heat pipe with screen mesh for nuclear reactor system, Appl. Therm. Eng. 209 (2022) 118296.
  18. L.H. Cisterna, M.C. Cardoso, E.L. Fronza, F.H. Milanez, M.B. Mantelli, Operation regimes and heat transfer coefficients in sodium two-phase thermosyphons, Int. J. Heat Mass Transf. 152 (2020) 119555.
  19. C. Wang, L. Zhang, X. Liu, S. Tang, S. Qiu, G.H. Su, Experimental study on startup performance of high temperature potassium heat pipe at different inclination angles and input powers for nuclear reactor application, Ann. Nucl. Energy 136 (2020) 107051.
  20. Z. Tian, X. Liu, C. Wang, D. Zhang, W. Tian, S. Qiu, G.H. Su, Experimental investigation on the heat transfer performance of high-temperature potassium heat pipe for nuclear reactor, Nucl. Eng. Des. 378 (2021) 111182.
  21. C. Wang, X. Liu, M. Liu, S. Tang, Z. Tian, D. Zhang, W. Tian, S. Qiu, G. Su, Experimental study on heat transfer limit of high temperature potassium heat pipe for advanced reactors, Ann. Nucl. Energy 151 (2021) 107935.
  22. Y. Ma, H. Yu, S. Huang, Y. Zhang, Y. Liu, C. Wang, R. Zhong, X. Chai, C. Zhu, X. Wang, Effect of inclination angle on the startup of a frozen sodium heat pipe, Appl. Therm. Eng. 201 (2022) 117625.
  23. R. Manoj, M. Kumar, R. Narasimha Rao, K. Rama Narasimha, P.V.S. Suresh, Performance evaluation of sodium heat pipe through parameteric studies, Frontiers in Heat Pipes (FHP) 3 (4) (2013).
  24. A.A. El-Nasr, S.M. El-Haggar, Effective thermal conductivity of heat pipes, Heat Mass Tran. 32 (1-2) (1996) 97-101.
  25. S. Mahjoub, A. Mahtabroshan, Numerical Simulation of a conventional heat pipe, World Academy of Science, Engineering and Technology 39 (2008) 117-122.
  26. Z. Tian, C. Wang, J. Huang, K. Guo, D. Zhang, X. Liu, G.H. Su, W. Tian, S. Qiu, Code development and analysis on the operation of liquid metal high temperature heat pipes under full condition, Ann. Nucl. Energy 160 (2021) 108396.
  27. T. Kaya, J. Goldak, Numerical analysis of heat and mass transfer in the capillary structure of a loop heat pipe, Int. J. Heat Mass Tran. 49 (17-18) (2006) 3211-3220.
  28. A.B. Solomon, M. Sekar, S.H. Yang, Analytical expression for thermal conductivity of heat pipe, Appl. Therm. Eng. 100 (2016) 462-467.
  29. C. Wang, Z. Zhang, M. Zhang, P. Li, Z. Tian, W. Tian, S. Qiu, G.H. Su, Numerical evaluation of non-condensable gas influence on the heat transfer characteristics of high-temperature lithium heat pipe during reactor operation, Ann. Nucl. Energy 173 (2022) 109077.
  30. I.J. Jin, Y.Y. Park, I.C. Bang, Heat transfer performance prediction for heat pipe using deep learning based on wick type, Int. J. Therm. Sci. 197 (2024) 108806.
  31. I.J. Jin, I.C. Bang, Deep learning based thermal performance optimization for the liquid metal heat pipe, in: Proceeding of International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20), Washington D.C., 2023.
  32. K. Kumararaja, C.S. Khiran Kumar, B. Sivaraman, A convolutional neural network analysis of a heat pipe with Hybrid Nanofluids, Int. J. Ambient Energy (2021) 1-13.
  33. V.M. Patel, H.B. Mehta, Thermal performance prediction models for a pulsating heat pipe using Artificial Neural Network (ANN) and Regression/Correlation Analysis (RCA), Sadhana 43 (11) (2018) 1-16.
  34. Y. Naresh, Numerical investigation on the heat transfer performance and optimisation of a finned heat pipe using artificial neural networks and genetic algorithm, Int. J. Ambient Energy 43 (1) (2022) 2231-2238.
  35. X. Wang, B. Li, Y. Yan, N. Gao, G. Chen, Predicting of thermal resistances of closed vertical meandering pulsating heat pipe using artificial neural network model, Appl. Therm. Eng. 149 (2019) 1134-1141.
  36. C. Oh, S. Han, J. Jeong, Time-series data augmentation based on interpolation, Procedia Computer Science 175 (2020) 64-71.
  37. Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, H. Xu, Time Series Data Augmentation for Deep Learning: A Survey, 2020 arXiv preprint arXiv: 2002.12478. https://doi.org/10.24963/ijcai.2021/631
  38. H. Chen, W. Han, D. Yang, S. Poria, DoubleMix: Simple Interpolation-Based Data Augmentation for Text Classification, 2022 arXiv preprint arXiv:2209.05297.
  39. B. Yegnanarayana, Artificial Neural Networks, PHI Learning Pvt. Ltd, 2009.
  40. S. Albawi, T.A. Mohammed, S. Al-Zawi, Understanding of a convolutional neural network, in: 2017 International Conference on Engineering and Technology (ICET), Ieee, 2017, August, pp. 1-6.
  41. S.M. Lundberg, S.I. Lee, A unified approach to interpreting model predictions, Adv. Neural Inf. Process. Syst. 30 (2017).
  42. D.H. Lee, I.C. Bang, Experimental investigation of thermal behavior of overfilled sodium heat pipe, Int. J. Heat Mass Tran. 215 (2023) 124449.
  43. Z. Tian, C. Wang, J. Huang, K. Guo, D. Zhang, X. Liu, G.H. Su, W. Tian, S. Qiu, Code development and analysis on the operation of liquid metal high temperature heat pipes under full condition, Ann. Nucl. Energy 160 (2021) 108396.
  44. Z. Zhang, X. Chai, C. Wang, H. Sun, D. Zhang, W. Tian, S. Qiu, G.H. Su, Numerical investigation on startup characteristics of high temperature heat pipe for nuclear reactor, Nucl. Eng. Des. 378 (2021) 111180.