DOI QR코드

DOI QR Code

Development of an on-demand flooding safety system achieving long-term inexhaustible cooling of small modular reactors employing metal containment vessel

  • Jae Hyung Park (Department of Nuclear Engineering, Hanyang University) ;
  • Jihun Im (Department of Nuclear Engineering, Hanyang University) ;
  • Hyo Jun An (Department of Nuclear Engineering, Hanyang University) ;
  • Yonghee Kim (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jeong Ik Lee (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Sung Joong Kim (Department of Nuclear Engineering, Hanyang University)
  • Received : 2023.07.13
  • Accepted : 2024.02.06
  • Published : 2024.07.25

Abstract

This paper proposes a flooding safety system (FSS) and its operation strategy that can provide long-term safety and effective maintenance for modules of small modular reactor (SMR) and metal containment maintained at dried environment during normal operation. During hypothesized accidents, the FSS re-collects the evaporated steam into the common pool by the condenser installed above the common water pool and provides an emergency coolant for the cavities and auxiliary pools. This study suggested that the condensate re-collection strategy using the FSS can effectively delay the depletion of available water in response to the accidents. Without recollection, the achievable grace periods ranged from 44 to 1507 days for six-module and one-module accidents, respectively. However, with a full re-collection (ratio = 1.0), the time to total depletion of emergency coolant was estimated indefinite. Even with a partial re-collection ratio of 0.3, a grace period of 83.5 days could be ensured for a six-module transient. This study reported the effectiveness of condensate re-collection and the FSS as an innovative safety management strategy and system. Employing a condensate re-collection strategy with a high re-collection ratio can enhance the long-term safety and effective convenience of SMR operations and maintenance.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT: Ministry of Science and ICT), Republic of Korea (No. NRF-2022M2D2A1A02061334 and NRF-2021M2D2A2076382).

References

  1. IPCC, Summary for policymakers [H.-O. Portner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegria, M. Craig, S. Langsdorf, S. Loschke, V. Moller, A. Okem (eds.)], in: D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegria, M. Craig, S. Langsdorf, S. Loschke, V. Moller, A. Okem, B. Rama (Eds.), In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Portner, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022, pp. 3-33, https://doi.org/10.1017/9781009325844.001.
  2. G.P. Peters, et al., Carbon dioxide emissions continue to grow amidst slowly emerging climate policies, Nat. Clim. Change 10 (1) (2020) 3-6. https://doi.org/10.1038/s41558-019-0659-6
  3. S. Kubo, The roles of nuclear energy in hydrogen production, Engineering 16 (2022) 16-20, https://doi.org/10.1016/j.eng.2021.12.024.
  4. A.M. Bayomy, M.A. Moore, Nuclear renewable hybrid energy system assessment through the thermal storage system, Int. J. Energy Res. 45 (8) (2021) 11689-11711, https://doi.org/10.1002/er.5514.
  5. H.A. Gabbar, A.B. Siddique, Technical and economic evaluation of nuclear powered hybrid renewable energy system for fast charging station, Energy Convers. Manag. X 17 (2023) 100342, https://doi.org/10.1016/j.ecmx.2022.100342.
  6. E.K. Redfoot, K.M. Verner, R.A. Borrelli, Applying analytic hierarchy process to industrial process design in a nuclear renewable hybrid energy system, Prog. Nucl. Energy 145 (2022) 104083, https://doi.org/10.1016/j.pnucene.2021.104083.
  7. M. Rath, M.G. Morgan, Assessment of a hybrid system that uses small modular reactors (SMRs) to back up intermittent renewables and desalinate water, Prog. Nucl. Energy 122 (2020) 103269, https://doi.org/10.1016/j.pnucene.2020.103269.
  8. M.F. Ruth, et al., Nuclear-renewable hybrid energy systems: opportunities, interconnections, and needs, Energy Convers. Manag. 78 (2014) 684-694, https://doi.org/10.1016/j.enconman.2013.11.030.
  9. R.S. El-Emam, M.H. Subki, Small modular reactors for nuclear-renewable synergies: prospects and impediments, Int. J. Energy Res. 45 (11) (2021) 16995-17004, https://doi.org/10.1002/er.6838.
  10. G. Locatelli, et al., Load following of small modular reactors (SMR) by cogeneration of hydrogen: a techno-economic analysis, Energy 148 (2018) 494-505, https://doi.org/10.1016/j.energy.2018.01.041.
  11. R.S. El-Emam, et al., Nuclear desalination: a sustainable route to water security, Desalination 542 (2022) 116082, https://doi.org/10.1016/j.desal.2022.116082.
  12. D.T. Ingersoll, et al., NuScale small modular reactor for co-generation of electricity and water, Desalination 340 (2014) 84-93, https://doi.org/10.1016/j.desal.2014.02.023.
  13. K.K. Kim, et al., SMART: the first licensed advanced integral reactor, J. Energy Power Eng. 8 (1) (2014) 94.
  14. K.H. Bae, et al., Safety evaluation of the inherent and passive safety features of the smart design, Ann. Nucl. Energy 28 (4) (2001) 333-349, https://doi.org/10.1016/S0306-4549(00)00057-8.
  15. K.H. Bae, et al., Enhanced safety characteristics of SMART100 adopting passive safety systems, Nucl. Eng. Des. 379 (2021) 111247, https://doi.org/10.1016/j.nucengdes.2021.111247.
  16. C.P. Marcel, et al., Phenomenology involved in self-pressurized, natural circulation, low thermo-dynamic quality, nuclear reactors: the thermal-hydraulics of the CAREM-25 reactor, Nucl. Eng. Des. 254 (2013) 218-227, https://doi.org/10.1016/j.nucengdes.2012.09.005.
  17. J. Deng, et al., Analysis of post-LOCA long-term core safety characteristics for the Small Modular Reactor ACP100, Ann. Nucl. Energy 142 (2020) 107349, https://doi.org/10.1016/j.anucene.2020.107349.
  18. Q. Xiong, et al., Design for ACP100 long term cooling flow resistance with random forests and inverse quantification, Ann. Nucl. Energy 180 (2023) 109477, https://doi.org/10.1016/j.anucene.2022.109477.
  19. J.R. Reyes, N. Jos'e, NuScale plant safety in response to extreme events, Nucl. Technol. 178 (2) (2012) 153-163, https://doi.org/10.13182/NT12-A13556.
  20. Koichi Hasegawa, Facing nuclear risks: lessons from the Fukushima nuclear disaster, Int. J. Jpn. Sociol. 21 (1) (2012) 84-91, https://doi.org/10.1111/j.1475-6781.2012.01164.x.
  21. L. Li, et al., MELCOR severe accident analysis for a natural circulation small modular reactor, Prog. Nucl. Energy 100 (2017) 197-208, https://doi.org/10.1016/j.pnucene.2017.06.003.
  22. R.-J. Park, et al., Development of severe accident mitigation technology and analysis for SMART, Nucl. Eng. Des. 374 (2021) 111061, https://doi.org/10.1016/j.nucengdes.2021.111061.
  23. M.D. Carelli, et al., The design and safety features of the IRIS reactor, Nucl. Eng. Des. 230 (1-3) (2004) 151-167, https://doi.org/10.1016/j.nucengdes.2003.11.022.
  24. P. Maccari, et al., ASTEC code DBA analysis of a passive mitigation strategy on a generic IRIS SMR, Ann. Nucl. Energy 156 (2021) 108194, https://doi.org/10.1016/j.anucene.2021.108194.
  25. M. Santinello, et al., External heat transfer capability of a submerged SMR containment: the Flexblue case, Prog. Nucl. Energy 96 (2017) 62-75, https://doi.org/10.1016/j.pnucene.2016.12.002.
  26. M.W. Na, et al., Indefinite sustainability of passive residual heat removal system of small modular reactor using dry air cooling tower, Nucl. Eng. Technol. 52 (5) (2020) 964-974, https://doi.org/10.1016/j.net.2019.11.003.
  27. R.-J. Park, et al., Development of IVR-ERVC evaluation method and its application to the SMART, Ann. Nucl. Energy 161 (2021) 108463, https://doi.org/10.1016/j. anucene.2021.108463.
  28. S.H. Kim, et al., Analysis on the discharge characteristics and spreading behavior of an ex-vessel core melt in the SMART, Nucl. Eng. Technol. 54 (12) (2022) 4551-4559, https://doi.org/10.1016/j.net.2022.07.030.
  29. K. Shirvan, P. Hejzlar, M.S. Kazimi, The design of a compact integral medium size PWR, Nucl. Eng. Des. 243 (2012) 393-403, https://doi.org/10.1016/j.nucengdes.2011.11.023.
  30. K. Paserba, The Westinghouse SMR: Simpler, Smaller, and Safer, Nuclear News, December, 2014.
  31. J. Liao, V.N. Kucukboyaci, R.F. Wright, Development of a LOCA safety analysis evaluation model for the Westinghouse small modular reactor, Ann. Nucl. Energy 98 (2016) 61-73, https://doi.org/10.1016/j.anucene.2016.07.023.
  32. R.P. Martin, E.S. Williams, J.G. Williams, Thermal-hydraulic design of the B&W mPower SMR, in: The 15th International Topical Meeting On Nuclear Reactor Thermal-Hydraulics, NURETH-15, Pisa, Italy, May 12-17, 2013, 2013.
  33. X.H. Nguyen, C. Kim, Y. Kim, An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber, Nucl. Eng. Technol. 51 (2) (2019) 369-376, https://doi.org/10.1016/j.net.2018.10.016.
  34. X.H. Nguyen, S. Jang, Y. Kim, Impacts of an ATF cladding on neutronic performances of the soluble-boron-free ATOM core, Int. J. Energy Res. 44 (10) (2020) 8193-8207, https://doi.org/10.1002/er.5322.
  35. X.H. Nguyen, S. Jang, Y. Kim, Truly-optimized PWR lattice for innovative solubleboron-free small modular reactor, Sci. Rep. 11 (1) (2021) 1-15, https://doi.org/ 10.1038/s41598-021-92350-5.
  36. E.E. Lewis, Fundamentals of Nuclear Reactor Physics, Elsevier, 2008 (Chapter 1).
  37. J. Buongiorno, et al., The offshore floating nuclear plant concept, Nucl. Technol. 194 (1) (2016) 1-14, https://doi.org/10.13182/NT15-49.
  38. Y. Zhang, et al., Safety analysis of a 300-MW (electric) offshore floating nuclear power plant in marine environment, Nucl. Technol. 203 (2) (2018) 129-145, https://doi.org/10.1080/00295450.2018.1433935.
  39. J. Choi, C. Lim, H. Kim, Fork-end heat pipe for passive air cooling of spent nuclear fuel pool, Nucl. Eng. Des. 374 (2021) 111081, https://doi.org/10.1016/j.nucengdes.2021.111081.
  40. E.W. Lemmon, et al., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology. Standard Reference Data Program, Gaithersburg, 2018.
  41. A. Dehbi, A generalized correlation for steam condensation rates in the presence of air under turbulent free convection, Int. J. Heat Mass Tran. 86 (2015) 1-15, https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.034.