Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT: Ministry of Science and ICT), Republic of Korea (No. NRF-2022M2D2A1A02061334 and NRF-2021M2D2A2076382).
References
- IPCC, Summary for policymakers [H.-O. Portner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegria, M. Craig, S. Langsdorf, S. Loschke, V. Moller, A. Okem (eds.)], in: D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegria, M. Craig, S. Langsdorf, S. Loschke, V. Moller, A. Okem, B. Rama (Eds.), In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Portner, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022, pp. 3-33, https://doi.org/10.1017/9781009325844.001.
- G.P. Peters, et al., Carbon dioxide emissions continue to grow amidst slowly emerging climate policies, Nat. Clim. Change 10 (1) (2020) 3-6. https://doi.org/10.1038/s41558-019-0659-6
- S. Kubo, The roles of nuclear energy in hydrogen production, Engineering 16 (2022) 16-20, https://doi.org/10.1016/j.eng.2021.12.024.
- A.M. Bayomy, M.A. Moore, Nuclear renewable hybrid energy system assessment through the thermal storage system, Int. J. Energy Res. 45 (8) (2021) 11689-11711, https://doi.org/10.1002/er.5514.
- H.A. Gabbar, A.B. Siddique, Technical and economic evaluation of nuclear powered hybrid renewable energy system for fast charging station, Energy Convers. Manag. X 17 (2023) 100342, https://doi.org/10.1016/j.ecmx.2022.100342.
- E.K. Redfoot, K.M. Verner, R.A. Borrelli, Applying analytic hierarchy process to industrial process design in a nuclear renewable hybrid energy system, Prog. Nucl. Energy 145 (2022) 104083, https://doi.org/10.1016/j.pnucene.2021.104083.
- M. Rath, M.G. Morgan, Assessment of a hybrid system that uses small modular reactors (SMRs) to back up intermittent renewables and desalinate water, Prog. Nucl. Energy 122 (2020) 103269, https://doi.org/10.1016/j.pnucene.2020.103269.
- M.F. Ruth, et al., Nuclear-renewable hybrid energy systems: opportunities, interconnections, and needs, Energy Convers. Manag. 78 (2014) 684-694, https://doi.org/10.1016/j.enconman.2013.11.030.
- R.S. El-Emam, M.H. Subki, Small modular reactors for nuclear-renewable synergies: prospects and impediments, Int. J. Energy Res. 45 (11) (2021) 16995-17004, https://doi.org/10.1002/er.6838.
- G. Locatelli, et al., Load following of small modular reactors (SMR) by cogeneration of hydrogen: a techno-economic analysis, Energy 148 (2018) 494-505, https://doi.org/10.1016/j.energy.2018.01.041.
- R.S. El-Emam, et al., Nuclear desalination: a sustainable route to water security, Desalination 542 (2022) 116082, https://doi.org/10.1016/j.desal.2022.116082.
- D.T. Ingersoll, et al., NuScale small modular reactor for co-generation of electricity and water, Desalination 340 (2014) 84-93, https://doi.org/10.1016/j.desal.2014.02.023.
- K.K. Kim, et al., SMART: the first licensed advanced integral reactor, J. Energy Power Eng. 8 (1) (2014) 94.
- K.H. Bae, et al., Safety evaluation of the inherent and passive safety features of the smart design, Ann. Nucl. Energy 28 (4) (2001) 333-349, https://doi.org/10.1016/S0306-4549(00)00057-8.
- K.H. Bae, et al., Enhanced safety characteristics of SMART100 adopting passive safety systems, Nucl. Eng. Des. 379 (2021) 111247, https://doi.org/10.1016/j.nucengdes.2021.111247.
- C.P. Marcel, et al., Phenomenology involved in self-pressurized, natural circulation, low thermo-dynamic quality, nuclear reactors: the thermal-hydraulics of the CAREM-25 reactor, Nucl. Eng. Des. 254 (2013) 218-227, https://doi.org/10.1016/j.nucengdes.2012.09.005.
- J. Deng, et al., Analysis of post-LOCA long-term core safety characteristics for the Small Modular Reactor ACP100, Ann. Nucl. Energy 142 (2020) 107349, https://doi.org/10.1016/j.anucene.2020.107349.
- Q. Xiong, et al., Design for ACP100 long term cooling flow resistance with random forests and inverse quantification, Ann. Nucl. Energy 180 (2023) 109477, https://doi.org/10.1016/j.anucene.2022.109477.
- J.R. Reyes, N. Jos'e, NuScale plant safety in response to extreme events, Nucl. Technol. 178 (2) (2012) 153-163, https://doi.org/10.13182/NT12-A13556.
- Koichi Hasegawa, Facing nuclear risks: lessons from the Fukushima nuclear disaster, Int. J. Jpn. Sociol. 21 (1) (2012) 84-91, https://doi.org/10.1111/j.1475-6781.2012.01164.x.
- L. Li, et al., MELCOR severe accident analysis for a natural circulation small modular reactor, Prog. Nucl. Energy 100 (2017) 197-208, https://doi.org/10.1016/j.pnucene.2017.06.003.
- R.-J. Park, et al., Development of severe accident mitigation technology and analysis for SMART, Nucl. Eng. Des. 374 (2021) 111061, https://doi.org/10.1016/j.nucengdes.2021.111061.
- M.D. Carelli, et al., The design and safety features of the IRIS reactor, Nucl. Eng. Des. 230 (1-3) (2004) 151-167, https://doi.org/10.1016/j.nucengdes.2003.11.022.
- P. Maccari, et al., ASTEC code DBA analysis of a passive mitigation strategy on a generic IRIS SMR, Ann. Nucl. Energy 156 (2021) 108194, https://doi.org/10.1016/j.anucene.2021.108194.
- M. Santinello, et al., External heat transfer capability of a submerged SMR containment: the Flexblue case, Prog. Nucl. Energy 96 (2017) 62-75, https://doi.org/10.1016/j.pnucene.2016.12.002.
- M.W. Na, et al., Indefinite sustainability of passive residual heat removal system of small modular reactor using dry air cooling tower, Nucl. Eng. Technol. 52 (5) (2020) 964-974, https://doi.org/10.1016/j.net.2019.11.003.
- R.-J. Park, et al., Development of IVR-ERVC evaluation method and its application to the SMART, Ann. Nucl. Energy 161 (2021) 108463, https://doi.org/10.1016/j. anucene.2021.108463.
- S.H. Kim, et al., Analysis on the discharge characteristics and spreading behavior of an ex-vessel core melt in the SMART, Nucl. Eng. Technol. 54 (12) (2022) 4551-4559, https://doi.org/10.1016/j.net.2022.07.030.
- K. Shirvan, P. Hejzlar, M.S. Kazimi, The design of a compact integral medium size PWR, Nucl. Eng. Des. 243 (2012) 393-403, https://doi.org/10.1016/j.nucengdes.2011.11.023.
- K. Paserba, The Westinghouse SMR: Simpler, Smaller, and Safer, Nuclear News, December, 2014.
- J. Liao, V.N. Kucukboyaci, R.F. Wright, Development of a LOCA safety analysis evaluation model for the Westinghouse small modular reactor, Ann. Nucl. Energy 98 (2016) 61-73, https://doi.org/10.1016/j.anucene.2016.07.023.
- R.P. Martin, E.S. Williams, J.G. Williams, Thermal-hydraulic design of the B&W mPower SMR, in: The 15th International Topical Meeting On Nuclear Reactor Thermal-Hydraulics, NURETH-15, Pisa, Italy, May 12-17, 2013, 2013.
- X.H. Nguyen, C. Kim, Y. Kim, An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber, Nucl. Eng. Technol. 51 (2) (2019) 369-376, https://doi.org/10.1016/j.net.2018.10.016.
- X.H. Nguyen, S. Jang, Y. Kim, Impacts of an ATF cladding on neutronic performances of the soluble-boron-free ATOM core, Int. J. Energy Res. 44 (10) (2020) 8193-8207, https://doi.org/10.1002/er.5322.
- X.H. Nguyen, S. Jang, Y. Kim, Truly-optimized PWR lattice for innovative solubleboron-free small modular reactor, Sci. Rep. 11 (1) (2021) 1-15, https://doi.org/ 10.1038/s41598-021-92350-5.
- E.E. Lewis, Fundamentals of Nuclear Reactor Physics, Elsevier, 2008 (Chapter 1).
- J. Buongiorno, et al., The offshore floating nuclear plant concept, Nucl. Technol. 194 (1) (2016) 1-14, https://doi.org/10.13182/NT15-49.
- Y. Zhang, et al., Safety analysis of a 300-MW (electric) offshore floating nuclear power plant in marine environment, Nucl. Technol. 203 (2) (2018) 129-145, https://doi.org/10.1080/00295450.2018.1433935.
- J. Choi, C. Lim, H. Kim, Fork-end heat pipe for passive air cooling of spent nuclear fuel pool, Nucl. Eng. Des. 374 (2021) 111081, https://doi.org/10.1016/j.nucengdes.2021.111081.
- E.W. Lemmon, et al., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology. Standard Reference Data Program, Gaithersburg, 2018.
- A. Dehbi, A generalized correlation for steam condensation rates in the presence of air under turbulent free convection, Int. J. Heat Mass Tran. 86 (2015) 1-15, https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.034.