DOI QR코드

DOI QR Code

Advanced radiation shielding materials: PbO2-doped zirconia ceramics synthesized through innovative sol-gel method

  • Islam G. Alhindawy (Nuclear Materials Authority) ;
  • Mohammad. W. Marashdeh (Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • Mamduh. J. Aljaafreh (Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • Mohannad Al-Hmoud (Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • Sitah Alanazi (Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • K. Mahmoud (Nuclear Materials Authority)
  • Received : 2023.11.07
  • Accepted : 2024.02.01
  • Published : 2024.07.25

Abstract

This work demonstrates a new sol-gel approach for synthesizing PbO2-doped zirconia using zircon mineral precursors. The streamlined methodology enables straightforward fabrication of the doped zirconia composites. Comprehensive materials characterization was performed using XRD, SEM, and TEM techniques to analyze the crystal structure, microstructure, and morphology. Quantitative analysis of the XRD data provided insights into the nanoscale crystallite sizes achieved, along with their relationship to lattice imperfections. Furthermore, the gamma-ray shielding capacity for the PbO2-doped zirconia samples was estimated by the Monte Carlo simulation, which proves an increase in the gamma ray shielding properties by raising the Pb concentration. The linear attenuation coefficient increased between 0.467 and 0.499 cm-1 (at 0.662 MeV) by increasing the Pb content between 11 and 21 wt%. By increasing the Pb content to 21 wt%, the synthesized composites' lead equivalent thickness reaches 2.49 cm. The radiation shielding properties for the synthesized composites revealed a remarkable performance against low and intermediate γ-ray photons, with radiation shielding capacity of 37.3 % and 21.4 % at 0.662 MeV and 2.506 MeV, respectively. As a result, the developed composites can be employed as an alternative shielding material in hospitals and radioactive zones.

Keywords

Acknowledgement

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23093).

References

  1. Z. Hlavac, J. Balak, I. Maruyama, O. Kontani, and M. Takizawa, Non-Destructive Testing of Concrete Irradiated by Neutrons.
  2. I.A. Kodeli, E. Sartori, SINBAD-Radiation shielding benchmark experiments, Ann. Nucl. Energy 159 (2021) 108254.
  3. J. Laquerre, Radiation safety for Radiologic technologists, Radiol. Technol. 92 (5) (2021) 469-483.
  4. I.G. Alhindawy, M.I. Sayyed, D.A. Aloraini, A.H. Almuqrin, M.S. Alomar, G. A. Elawadi, K.A. Mahmoud, A multi-phase investigation to understand the function of lanthanum and neodymium in the zirconia ceramics' synthesis, structural, and gamma-ray protective ability, Radiat. Phys. Chem. 215 (2024) 111336.
  5. J.R. Kelly, I. Denry, Stabilized zirconia as a structural ceramic: an overview, Dent. Mater. 24 (3) (2008) 289-298.
  6. H. Luo, Y. Li, R. Xiang, W. Jia, M. Li, S. Li, D. Lao, H. Wang, Q. Yan, C. Dong, Exploring the potential of the mechanical/thermal properties and co-shielding ability of Bi2O3-doped aluminum borate ceramics against neutron/gamma radiation, Ceram. Int. 47 (11) (2021) 15508-15519.
  7. E. Abdel Wahab, K.S. Shaaban, R. Elsaman, E.S. Yousef, Radiation shielding and physical properties of lead borate glass-doped ZrO 2 nanoparticles, Appl. Phys. A 125 (2019) 1-15.
  8. L. Hu, C.-A. Wang, Y. Huang, Porous yttria-stabilized zirconia ceramics with ultralow thermal conductivity, J. Mater. Sci. 45 (2010) 3242-3246.
  9. I.G. Alhindawy, H. Gamal, A.A. Zaher, M.I. Sayyed, D.A. Alorain, A.H. Almuqrin, Y. A. Elsheikh, O.Y. Bakather, K.A. Mahmoud, La/Nd-doped zirconium oxide: impact of zirconia phase transition on gamma-ray shielding properties, J. Phys. Chem. Solid. (2023) 111828.
  10. G. Kaur, G. Kaur, Interaction of Glass Seals/Electrodes and Electrolytes. Solid Oxide Fuel Cell Components, Interfacial Compatibility of SOFC Glass Seals, 2016, pp. 315-374.
  11. G. George, T. Senthil, Z. Luo, S. Anandhan, Sol-gel electrospinning of diverse ceramic nanofibers and their potential applications, in: Electrospun Polymers and Composites, Elsevier, 2021, pp. 689-764.
  12. H.L. Tuller, S.R. Bishop, Tailoring material properties through defect engineering, Chem. Lett. 39 (12) (2010) 1226-1231.
  13. L.J. Tomar, Investigation of Optical Absorption, Emission and Photoelectric Properties of Rare Earth and Transition Metal Doped TiO 2/ZrO 2 Compounds, Maharaja Sayajirao University of Baroda, 2017 (India).
  14. L. Burgio, R.J. Clark, S. Firth, Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products, Analyst 126 (2) (2001) 222-227.
  15. V. Kamat, Studies on Composite Materials for Ionizing Radiation Shielding. Centre for Application of Radioisotopes and Radiation Technology (CARPT), Mangalore University, 2020.
  16. T. Kaur, J. Sharma, T. Singh, Review on scope of metallic alloys in gamma rays shield designing, Prog. Nucl. Energy 113 (2019) 95-113.
  17. J. Liu, F. Liu, J. Xu, Z. Han, Effect of current density on interface structure and performance of CF/β-PbO2 electrodes during zinc electrowinning, Ceram. Int. 46 (2) (2020) 2403-2408.
  18. I. Boukhris, I. Kebaili, M. Al-Buriahi, C. Sriwunkum, M. Sayyed, Effect of lead oxide on the optical properties and radiation shielding efficiency of antimony-sodium-tungsten glasses, Appl. Phys. A 126 (2020) 1-10.
  19. E. Ayuk, M. Ugwu, S.B. Aronimo, A review on synthetic methods of nanostructured materials, Chem. Res. J. 2 (5) (2017) 97-123.
  20. Y. He, W. Gao, Novel sol-gel methods for preparation of ceramic-oxide coatins, Int. J. Mod. Phys. B 24 (15n16) (2010) 2983-2991.
  21. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, M. Herrmann, Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments, Adv. Eng. Mater. 16 (7) (2014) 830-849.
  22. I.G. Alhindawy, E.A. Elshehy, M.E. El-Khouly, Y.K. Abdel-Monem, M.S. Atrees, Fabrication of mesoporous NaZrP cation-exchanger for U(VI) ions separation from uranyl leach liquors, Colloids and Interfaces 3 (4) (2019) 61.
  23. I.G. Alhindawy, H. Gamal, A.H. Almuqrin, M.I. Sayyed, K.A. Mahmoud, Impacts of the calcination temperature on the structural and radiation shielding properties of the NASICON compound synthesized from zircon minerals, Nucl. Eng. Technol. 55 (5) (2023) 1885-1891.
  24. I.G. Alhindawy, M.I. Sayyed, A.H. Almuqrin, K.A. Mahmoud, Optimizing gamma radiation shielding with cobalt-titania hybrid nanomaterials, Sci. Rep. 13 (1) (2023) 8936.
  25. D. Wang, Y. Guo, K. Liang, K. Tao, Crystal structure of zirconia by Rietveld refinement, Sci. China, Ser. A: Mathematics 42 (1999) 80-86.
  26. A. Zaslavskii, Y.D. Kondrashov, S. Tolkachev, New modification of lead dioxide and the texture of anodic deposits, Dokl. Akad. Nauk SSSR 75 (1950) 559-561.
  27. M. Winterer, R. Delaplane, R. McGreevy, X-ray diffraction, neutron scattering and EXAFS spectroscopy of monoclinic zirconia: analysis by Rietveld refinement and reverse Monte Carlo simulations, J. Appl. Crystallogr. 35 (4) (2002) 434-442.
  28. M. Occhiuzzi, D. Cordischi, R. Dragone, Manganese ions in the monoclinic, tetragonal and cubic phases of zirconia: an XRD and EPR study, Phys. Chem. Chem. Phys. 5 (21) (2003) 4938-4945.
  29. I.G. Alhindawy, E.A. Elshehy, A.O. Youssef, S.M. Abdelwahab, A.A. Zaher, W.A. El-Said, H.I. Mira, A.M. Abdelkader, Improving the photocatalytic performance of cobalt-doped titania nanosheets by induced oxygen vacancies for efficient degradation of organic pollutants, Nano-Structures & Nano-Objects 31 (2022) 100888.
  30. I.G. Alhindawy, H.I. Mira, A.O. Youssef, S.M. Abdelwahab, A.A. Zaher, W.A. El-Said, E.A. Elshehy, A.M. Abdelkader, Cobalt doped titania-carbon nanosheets with induced oxygen vacancies for photocatalytic degradation of uranium complexes in radioactive wastes, Nanoscale Adv. 4 (24) (2022) 5330-5342.
  31. K.A. Mahmoud, M.I. Sayyed, A.H. Almuqrin, M.A. Elhelaly, I.G. Alhindawy, Synthesis of glass powders for radiation shielding applications based on zirconium minerals' leach liquor, Radiat. Phys. Chem. 207 (2023) 110867.
  32. A. Begum, A. Hussain, A. Rahman, Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films, Beilstein J. Nanotechnol. 3 (1) (2012) 438-443.
  33. M.O.A. El-Magied, A.I.L.A.E. Fatah, H. Mashaal, A. Tawfique, I.G. Alhindawy, E.S. A. Manaa, E.A. Elshehy, Fabrication of worm-like mesoporous silica monoliths as an efficient sorbent for thorium ions from nitrate media, Radiochemistry 64 (1) (2022) 62-73.
  34. M.A. Eldoma, S.O. Alaswad, M.A. Mahmoud, I.Y. Qudsieh, M. Hassan, O. Y. Bakather, G.A. Elawadi, A.F.F. Abouatiaa, M.S. Alomar, M.S. Elhassan, I. G. Alhindawy, Z.M. Ahmed, Enhancing photocatalytic performance of Co-TiO2 and Mo-TiO2-based catalysts through defect engineering and doping: a study on the degradation of organic pollutants under UV light, J. Photochem. Photobiol. Chem. 446 (2024) 115164.
  35. T. Ungar, A. Rrevesz, A. Borbely, Dislocations and grain size in electrodeposited nanocrystalline Ni determined by the modified Williamson-Hall and Warren-Averbach procedures, J. Appl. Crystallogr. 31 (4) (1998) 554-558.
  36. K. Zhang, I. Alexandrov, A. Kilmametov, R. Valiev, K. Lu, The crystallite-size dependence of structural parameters in pure ultrafine-grained copper, J. Phys. Appl. Phys. 30 (21) (1997) 3008.
  37. S. Terada, H. Murakami, K. Nishihagi, Thickness and density measurement for new materials with combined X-ray technique, in: 2001 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, IEEE Cat. No.01CH37160), 2001.