Acknowledgement
본 논문은 인하대학교의 지원에 의해 연구되었습니다.
References
- Ahn, Yoonae, and Cho, Hanjin. 2021. A Study on XAI-based Clinical Decision Support System. The Journal of the Korea Contents Association 21(12):13-22. https://doi.org/10.5392/JKCA.2021.21.12.013
- Arrieta, A., B., Daz-Rodrguez, N., Ser, J., D., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., and Herrera, F. 2020. Explainable Artificial Intelligence (XAI): Concepts, taxono- mies, opportunities and challenges toward responsible AI. Information Fusion 58:82-115. https://doi.org/10.1016/j.inffus.2019.12.012
- Chen, Y., and Guestrin, C. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 2016:785-794.
- Freund, Y., Schapire, R., and Abe, N. 1999. A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14(5):771-780.
- Friedman, J. H. 2001. Greedy function approximation: a gradient boosting machine. The Annals of Statistics 29(5):1189-1232. https://doi.org/10.1214/aos/1013203451
- Han, Junga. 2023. Exploring Predictors Affecting Creative Thinking in High School Students Using Random Forest and SHAP. Korean Journal of Educational Research 61(4):101-131.
- Han, Yonghee. 2022. Prediction Model of CNC Processing Defects using Machine Learning. Journal of the Korea Convergence Society 13(2):249-255. https://doi.org/10.15207/JKCS.2022.13.02.249
- Hong, Jisoo, Hong, Yongmin, Oh, Seungyong, Kang, Taeho, Lee, Hyeonjeong, and Kang, Sungwoo. 2023. Injection Process Yield Improvement Methodology Based on eXplainable Artificial Intelligence(XAI) Algotihm. Journal of Korean Society for Quality Management 51(1):55-65.
- Ju, Hyejin, Seo, Hojin, Kim, Yeoungil, Kim, Sujin, Lee, Gunmyung, Kim, Sanghyeon, Jeong, Yoonhyeon, and Byun, Jaihyun. 2023. A Case Study of CNC Machining Process Improvement and Quality Prediction Model Development Using Design of Experiments and Machine Learning. Journal of the Korean Institute of Industrial Engineers 49(4):354-368. https://doi.org/10.7232/JKIIE.2023.49.4.354
- KAIST. 2020. CNC Machine AI Dataset. Korea AI Manufacturing Platform(KAMP). 2020(December):01-58. https://www.kamp-ai.kr/front/main/MAIN.01.01.jsp.
- Kang, Seonghyeon, and Kim. Seoungbum. 2016. Multivariate Monitoring of the Metal Frame Process in Mobile Device Manufacturing. Journal of the Korean Insititute of Industrial Engineers 42(6):395-403. https://doi.org/10.7232/JKIIE.2016.42.6.395
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu T. 2017. Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems 30(2017).
- Kim, Hyunju, Park, Mingyu, and Lee, Jihwan. 2023. A Study on the Prediction of Fuel Consumption of Bulk Ship Main Engine Using Explainable Artificial Intelligence. Journal of Navigation and Port Research 47(4):182-190. https://doi.org/10.5394/KINPR.2023.47.4.182
- Kim, Iljung, Kim, Woosoon, Kim, Joonyoung, Chae, Heesu, Woo, Jiyeong, Do Kyungmin, Lim, Sunghoon, Shin, Minsoo, Lee, Jieun, Kim, Heungnam. 2022. Discovering Essential AI-based Manufacturing Policy Issues for Competitive Reinforcement of Small and Medium Manufacturing Enterprises. Journal of Korean Society for Quality Management 50(4):647-664. https://doi.org/10.7469/JKSQM.2022.50.4.647
- Kim, Kanghee, Kim, Hyunjung. 2022. A Study on the Build of a QbD Six Sigma System to Promote Quality Improvement(QbD) Based on Drug Design. Journal of Korean Society for Quality Management 50(3):373-386.
- Kim, Namki, Jung, Minyoung, Park, Junpyo, Jin, Seungjong, and Wang, Jinam. 2022. Predict the Quality of CNC Processes and Analyze the Causes of Defects. Proceedings of Korean Institute of Industrial Engineers Spring Joint Conference. 2022.
- Lee, Hyunggeun, Hong, Yongmin, and Kang, Sungwoo. 2021. Identifying Process Capability Index for Electricity Distribution System through Thermal Image Analysis. Journal of Korean Society for Quality Management 49(3):327-340. https://doi.org/10.7469/JKSQM.2021.49.3.327
- Lee, Juyeon. 2020. Technologies for Collecting, Processing, Analyzing, and Utilizing Data for Intelligent Die-casting Processes. Journal of the Korean Society of Manufacturing Technology Engineers 29(6):441-448. https://doi.org/10.7735/ksmte.2020.29.6.441
- Lee, Kangbae, Park, Sungho, Sung, Sangha, and Park, Domyoung. 2019. A Study on the Predicition of CNC Tool Wear Using Machine Learning Technique. Journal of the Korea Convergence Society 10(11):15-21. https://doi.org/10.15207/JKCS.2019.10.11.015
- Lee, Seunghoon, Kim, Yongsoo. 2022. A Pre-processing Using TadGAN-based Time-series Anomaly Detection. Journal of Korean Society for Quality Management 50(3): 459-471.
- Lee, Youngchoon. 2017. A Study on Design Method using CNC in Wooden Products. Journal of the Korea Furniture Society 28(4):371-379. https://doi.org/10.22873/KOFUSO.2017.28.4.371
- Na, Kwangtek, Lee, Jinyoung, Kim, Eunchan, and Lee, Hyochan. 2020. A Securities Company's Customer Churn Prediction Model and Causal Inference with SHAP Value. The Korea Journal of BigData 5(2):215-229 https://doi.org/10.36498/KBIGDT.2020.5.2.215
- Nahm, Euiseok. 2023. A Study on Modeling of Activated Sludge Process in Wastewater Treatment System Utilizing XAI(eXplainable AI). the Transactions of the Korean Instititue of Electrical Engineers 72(2):263-269. https://doi.org/10.5370/KIEE.2023.72.2.263
- Oh, Hyungrok, Son, Aelin, and Lee, Zoonky. 2021. Occupational accident prediction modeling and analysis using SHAP. Journal of Digital Contents Society 22(7):1115-1123. https://doi.org/10.9728/dcs.2021.22.7.1115
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A., V., and Gulin, A. 2018. CatBoost: unbiased boosting with categorical features. Advances in Neural Information Processing Systems 31(2018).
- Seo, Jibeom, and Kang, Namhwa. 2023. Exploration of Factors on Pre-service Science Teacher's Major Satisfaction and Academic Satisfaction using Machine Learning and Explainable AI SHAP. Journal of Science Education 47(1):37-51.