DOI QR코드

DOI QR Code

Effects of Parameters Defining the Characteristics of Raindrops in the Cloud Microphysics Parameterization on the Simulated Summer Precipitation over the Korean Peninsula

구름미세물리 모수화 방안 내 빗방울의 특성을 정의하는 매개변수가 한반도 여름철 강수 모의에 미치는 영향

  • Ki-Byung Kim (BK21 Weather Extremes Education & Research Team, Department of Atmospheric Sciences, Kyungpook National University) ;
  • Kwonil Kim (School of Marine and Atmospheric Sciences, Stony Brook University) ;
  • GyuWon Lee (BK21 Weather Extremes Education & Research Team, Department of Atmospheric Sciences, Kyungpook National University) ;
  • Kyo-Sun Sunny Lim (BK21 Weather Extremes Education & Research Team, Department of Atmospheric Sciences, Kyungpook National University)
  • 김기병 (경북대학교 대기과학과 BK21 위험기상 교육연구팀) ;
  • 김권일 (스토니브룩대학교 해양대기과학부) ;
  • 이규원 (경북대학교 대기과학과 BK21 위험기상 교육연구팀) ;
  • 임교선 (경북대학교 대기과학과 BK21 위험기상 교육연구팀)
  • Received : 2024.06.25
  • Accepted : 2024.08.06
  • Published : 2024.08.31

Abstract

The study examines the effects of parameters that define the characteristics of raindrops on the simulated precipitation during the summer season over Korea using the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) cloud microphysics scheme. Prescribed parameters, defining the characteristics of hydrometeors in the WDM6 scheme such as aR, bR, and fR in the fall velocity (VR) - diameter (DR) relationship and shape parameter (𝜇R) in the number concentration (NR) - DR relationship, presents different values compared to the observed data from Two-Dimensional Video Disdrometer (2DVD) at Boseong standard meteorological observatory during 2018~2019. Three experiments were designed for the heavy rainfall event on August 8, 2022 using WRF version 4.3. These include the control (CNTL) experiment with original parameters in the WDM6 scheme; the MUR experiment, adopting the 50th percentile observation value for 𝜇R; and the MEDI experiment, which uses the same 𝜇R as MUR, but also includes fitted values for aR, bR, and fR from the 50th percentile of the observed VR - DR relationship. Both sensitivity experiments show improved precipitation simulation compared to the CNTL by reducing the bias and increasing the probability of detection and equitable threat scores. In these experiments, the raindrop mixing ratio increases and its number concentration decreases in the lower atmosphere. The microphysics budget analysis shows that the increase in the rain mixing ratio is due to enhanced source processes such as graupel melting, vapor condensation, and accretion between cloud water and rain. Our study also emphasizes that applying the solely observed 𝜇R produces more positive impact in the precipitation simulation.

Keywords

Acknowledgement

본 연구는 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(RS-2023-00272424)과 기상청 국립기상과학원 수도권 위험기상 입체관측 및 예보활용 기술 개발(KMA2018-00125)의 지원으로 수행되었습니다. 논문 작성 과정에 도움을 주신 UTHSC 최효영 교수님께 감사드립니다.

References

  1. Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 1-35, doi:10.1029/RG011i001p00001.
  2. Bang, W., S. Kwon, and G. Lee, 2017: Characteristic of raindrop size distribution using two-dimensional video disdrometer data in Daegu, Korea. J. Korean Earth Sci. Soc., 38, 511-521, doi:10.5467/JKESS.2017.38.7.511 (in Korean with English abstract).
  3. Cha, J. W., and S. S. Yum, 2021: Characteristics of precipitation particles measured by PARSIVEL disdrometer at a mountain and a coastal site in Korea. Asia-Pac. J. Atmos. Sci., 57, 261-276, doi:10.1007/s13143-020-00190-6.
  4. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
  5. Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815-1842, doi:10.1002/qj.49712656613.
  6. Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Atmos. Sci., 6, 243-248, doi:10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.
  7. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803.
  8. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
  9. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1.
  10. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. Atmos., 113, doi:10.1029/2008JD009944.
  11. Jash, D., E. A. Resmi, C. K. Unnikrishnan, R. K. Sumesh, T. S. Sreekanth, N. Sukumar, and K. K. Ramachandran, 2019: Variation in rain drop size distribution and rain integral parameters during southwest monsoon over a tropical station: an inter-comparison of disdrometer and micro rain radar. Atmos. Res., 217, 24-36, doi:10.1016/j.atmosres.2018.10.014.
  12. Jimenez, P. A., J. Dudhia, J. F. Gonzalez-Rouco, J. Navarro, J. P. Montavez, and E. Garcia-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898-918, doi:10.1175/MWR-D-11-00056.1.
  13. Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.
  14. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: an update. J. Appl. Meteor. Climatol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
  15. Kim, D.-S., K.-S. S. Lim, K. Kim, and G. W. Lee, 2020: Effects of the realistic description for the terminal fall velocity-diameter relationship of raindrops on the simulated summer precipitation over South Korea. Atmosphere, 30, 421-437, doi:10.14191/Atmos.2020.30.4.421 (in Korean with English abstract).
  16. KMA, 2023: 2022 Abnormal Climate Report. Korea Meteorological Administration, 26-27 pp (in Korean).
  17. Lee, J., H.-G. Jin, and J.-J. Baik, 2023: Diagnostic relations for the intercept parameter of exponential raindrop size distribution according to rain types derived from disdrometer data and their impacts on precipitation prediction. Asia-Pac. J. Atmos. Sci., 59, 219-238, doi:10.1007/s13143-022-00306-0.
  18. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612, doi:10.1175/2009MWR2968.1.
  19. Lim, K.-S. S., 2019: Bulk-type cloud microphysics parameterization in atmospheric models. Atmosphere, 29, 227- 239, doi:10.14191/Atmos.2019.29.2.227 (in Korean with English abstract).
  20. Lim, K.-S. S., 2020: Effects of the mass-size relationship for snow on the simulated surface precipitation. J. Korean Earth Sci. Soc., 41, 1-18, doi:10.5467/JKESS.2020.41.1.1 (in Korean with English abstract).
  21. Liu, J. Y., and H. D. Orville, 1969: Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sci., 26, 1283-1298, doi:10.1175/1520-0469(1969)026<1283:NMOPAC>2.0.CO;2.
  22. Ma, Y., G. Ni, C. V. Chandra, F. Tian, and H. Chen, 2019: Statistical characteristics of raindrop size distribution during rainy seasons in the Beijing urban area and implications for radar rainfall estimation. Hydrol. Earth Syst. Sci., 23, 4153-4170, doi:10.5194/hess-23-4153-2019.
  23. Mao, W., W. Zhang, and M. Kou, 2023: Statistical characteristics of raindrop size distribution during rainy seasons in complicated mountain terrain. Hydrol. Earth Syst. Sci., 27, 3895-3910, doi:10.5194/hess-27-3895-2023.
  24. Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteorol., 5, 165-166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.
  25. Matsunobu, T., C. Keil, and C. Barthlott, 2022: The impact of microphysical uncertainty conditional on initial and boundary condition uncertainty under varying synoptic control. Weather Clim. Dynam., 3, 1273-1289, doi:10.5194/wcd-3-1273-2022.
  26. Moon, J.-Y., D.-K. Kim, Y.-H. Kim, J.-C. Ha, and K.-Y. Chung, 2013: Analysis of summer rainfall case over southern coast using MRR and PARSIVEL disdrometer measurements in 2012. Atmosphere, 23, 265-273, doi:10.14191/Atmos.2013.23.3.265 (in Korean with English abstract).
  27. Morcrette, J.-J., H. W. Barker, J. N. S. Cole, M. J. Iacono, and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon. Wea. Rev., 136, 4773-4798, doi:10.1175/2008MWR2363.1.
  28. Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: description. J. Atmos. Sci., 62, 1665-1677, doi:10.1175/JAS3446.1.
  29. Seela, B. K., and Coauthors, 2021: Raindrop size distributions of North Indian Ocean tropical cyclones observed at the coastal and inland stations in South India. Remote Sens., 13, 3178, doi:10.3390/rs13163178.
  30. Skamarock, W. C., and Coauthors, 2021: A description of the advanced research WRF model version 4.3 (No. NCAR/TN-556+STR). 148 pp, doi:10.5065/1dfh-6p97.
  31. Stensrud, D. J., 2009: Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press, 261 pp.
  32. Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095-5115, doi:10.1175/2008MWR2387.1.
  33. van Lier-Walqui, M., T. Vukicevic, and D. J. Posselt, 2012: Quantification of cloud microphysical parameterization uncertainty using radar reflectivity. Mon. Wea. Rev., 140, 3442-3466, doi:10.1175/MWR-D-11-00216.1.
  34. Wang, X., L. Zhang, and M. D. Moran, 2010: Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain. Atmos. Chem. Phys., 10, 5685-5705, doi:10.5194/acp-10-5685-2010.
  35. Zhang, A., C. Chen, and L. Wu, 2023: Regional variability of raindrop size distribution from a network of disdrometers over complex terrain in Southern China. Remote Sens., 15, 2678, doi:10.3390/rs15102678.