Acknowledgement
본 연구는 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(RS-2023-00272424)과 기상청 국립기상과학원 수도권 위험기상 입체관측 및 예보활용 기술 개발(KMA2018-00125)의 지원으로 수행되었습니다. 논문 작성 과정에 도움을 주신 UTHSC 최효영 교수님께 감사드립니다.
References
- Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 1-35, doi:10.1029/RG011i001p00001.
- Bang, W., S. Kwon, and G. Lee, 2017: Characteristic of raindrop size distribution using two-dimensional video disdrometer data in Daegu, Korea. J. Korean Earth Sci. Soc., 38, 511-521, doi:10.5467/JKESS.2017.38.7.511 (in Korean with English abstract).
- Cha, J. W., and S. S. Yum, 2021: Characteristics of precipitation particles measured by PARSIVEL disdrometer at a mountain and a coastal site in Korea. Asia-Pac. J. Atmos. Sci., 57, 261-276, doi:10.1007/s13143-020-00190-6.
- Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
- Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815-1842, doi:10.1002/qj.49712656613.
- Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Atmos. Sci., 6, 243-248, doi:10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.
- Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803.
- Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
- Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1.
- Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. Atmos., 113, doi:10.1029/2008JD009944.
- Jash, D., E. A. Resmi, C. K. Unnikrishnan, R. K. Sumesh, T. S. Sreekanth, N. Sukumar, and K. K. Ramachandran, 2019: Variation in rain drop size distribution and rain integral parameters during southwest monsoon over a tropical station: an inter-comparison of disdrometer and micro rain radar. Atmos. Res., 217, 24-36, doi:10.1016/j.atmosres.2018.10.014.
- Jimenez, P. A., J. Dudhia, J. F. Gonzalez-Rouco, J. Navarro, J. P. Montavez, and E. Garcia-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898-918, doi:10.1175/MWR-D-11-00056.1.
- Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.
- Kain, J. S., 2004: The Kain-Fritsch convective parameterization: an update. J. Appl. Meteor. Climatol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
- Kim, D.-S., K.-S. S. Lim, K. Kim, and G. W. Lee, 2020: Effects of the realistic description for the terminal fall velocity-diameter relationship of raindrops on the simulated summer precipitation over South Korea. Atmosphere, 30, 421-437, doi:10.14191/Atmos.2020.30.4.421 (in Korean with English abstract).
- KMA, 2023: 2022 Abnormal Climate Report. Korea Meteorological Administration, 26-27 pp (in Korean).
- Lee, J., H.-G. Jin, and J.-J. Baik, 2023: Diagnostic relations for the intercept parameter of exponential raindrop size distribution according to rain types derived from disdrometer data and their impacts on precipitation prediction. Asia-Pac. J. Atmos. Sci., 59, 219-238, doi:10.1007/s13143-022-00306-0.
- Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612, doi:10.1175/2009MWR2968.1.
- Lim, K.-S. S., 2019: Bulk-type cloud microphysics parameterization in atmospheric models. Atmosphere, 29, 227- 239, doi:10.14191/Atmos.2019.29.2.227 (in Korean with English abstract).
- Lim, K.-S. S., 2020: Effects of the mass-size relationship for snow on the simulated surface precipitation. J. Korean Earth Sci. Soc., 41, 1-18, doi:10.5467/JKESS.2020.41.1.1 (in Korean with English abstract).
- Liu, J. Y., and H. D. Orville, 1969: Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sci., 26, 1283-1298, doi:10.1175/1520-0469(1969)026<1283:NMOPAC>2.0.CO;2.
- Ma, Y., G. Ni, C. V. Chandra, F. Tian, and H. Chen, 2019: Statistical characteristics of raindrop size distribution during rainy seasons in the Beijing urban area and implications for radar rainfall estimation. Hydrol. Earth Syst. Sci., 23, 4153-4170, doi:10.5194/hess-23-4153-2019.
- Mao, W., W. Zhang, and M. Kou, 2023: Statistical characteristics of raindrop size distribution during rainy seasons in complicated mountain terrain. Hydrol. Earth Syst. Sci., 27, 3895-3910, doi:10.5194/hess-27-3895-2023.
- Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteorol., 5, 165-166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.
- Matsunobu, T., C. Keil, and C. Barthlott, 2022: The impact of microphysical uncertainty conditional on initial and boundary condition uncertainty under varying synoptic control. Weather Clim. Dynam., 3, 1273-1289, doi:10.5194/wcd-3-1273-2022.
- Moon, J.-Y., D.-K. Kim, Y.-H. Kim, J.-C. Ha, and K.-Y. Chung, 2013: Analysis of summer rainfall case over southern coast using MRR and PARSIVEL disdrometer measurements in 2012. Atmosphere, 23, 265-273, doi:10.14191/Atmos.2013.23.3.265 (in Korean with English abstract).
- Morcrette, J.-J., H. W. Barker, J. N. S. Cole, M. J. Iacono, and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon. Wea. Rev., 136, 4773-4798, doi:10.1175/2008MWR2363.1.
- Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: description. J. Atmos. Sci., 62, 1665-1677, doi:10.1175/JAS3446.1.
- Seela, B. K., and Coauthors, 2021: Raindrop size distributions of North Indian Ocean tropical cyclones observed at the coastal and inland stations in South India. Remote Sens., 13, 3178, doi:10.3390/rs13163178.
- Skamarock, W. C., and Coauthors, 2021: A description of the advanced research WRF model version 4.3 (No. NCAR/TN-556+STR). 148 pp, doi:10.5065/1dfh-6p97.
- Stensrud, D. J., 2009: Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press, 261 pp.
- Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095-5115, doi:10.1175/2008MWR2387.1.
- van Lier-Walqui, M., T. Vukicevic, and D. J. Posselt, 2012: Quantification of cloud microphysical parameterization uncertainty using radar reflectivity. Mon. Wea. Rev., 140, 3442-3466, doi:10.1175/MWR-D-11-00216.1.
- Wang, X., L. Zhang, and M. D. Moran, 2010: Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain. Atmos. Chem. Phys., 10, 5685-5705, doi:10.5194/acp-10-5685-2010.
- Zhang, A., C. Chen, and L. Wu, 2023: Regional variability of raindrop size distribution from a network of disdrometers over complex terrain in Southern China. Remote Sens., 15, 2678, doi:10.3390/rs15102678.