DOI QR코드

DOI QR Code

Probing into the optimum preparation and the chemical durability of Sr0.5Zr2(PO4)3-SmPO4 dual-phase ceramics for nuclear waste forms via in-situ synthesis

  • Kunqi Liu (School of Materials and Chemistry, Southwest University of Science and Technology) ;
  • Junxia Wang (School of Materials and Chemistry, Southwest University of Science and Technology) ;
  • Anhang Wu (School of Materials and Chemistry, Southwest University of Science and Technology) ;
  • Jin Wang (School of Materials and Chemistry, Southwest University of Science and Technology) ;
  • Die Liu (School of Materials and Chemistry, Southwest University of Science and Technology) ;
  • Xiaoling Ma (School of Materials and Chemistry, Southwest University of Science and Technology)
  • Received : 2023.06.29
  • Accepted : 2024.01.17
  • Published : 2024.06.25

Abstract

In this work, Sr0.5Zr2(PO4)3-SmPO4 dual-phase ceramics were prepared via in-situ synthesis process, which is a potential novel nuclear waste form for immobilizing the fission product 90Sr and the trivalent actinide radionuclides in high-level waste (HLW). And the preparation technology, microstructure and chemical durability of Sr0.5Zr2(PO4)3-SmPO4 dual-phase ceramics were systematically investigated. It was confirmed that the optimum microwave-sintering temperature (1050 ℃) and heat preservation time (1.5 h) is estimated by Archimedes method. Besides, the as-prepared samples that were consisted of strontium zirconium phosphate (SrZP) and monazite showed the remarkable densification, in which the two crystalline phases were intermixed well with each other. Meanwhile, the formation and evolution of microstructure was also consistent with the variational rule of Sr0.5Zr2(PO4)3/SmPO4, indicating that there was not mutual reaction during the in-situ synthesis process. The PCT and MCC-1 experimental results demonstrated that the elemental normalized leaching rates of tested samples are all at a low level (LRSr ~10-4 g·m-2·d-1, LRZr ~10-8-10-6 g·m-2·d-1, LRSm ~10-7-10-5 g·m-2·d-1 and LRP ~10-4 g·m-2·d-1). It is indicated that Sr0.5Zr2(PO4)3-SmPO4 dual-phase ceramics possesses excellent chemical durability for HLW disposal.

Keywords

Acknowledgement

The authors express a sincere appreciation to support by the National Natural Science Foundation of China (Nos. 12275226 and 12075195).

References

  1. R.C. Ewing, W.J. Weber, F.W.C. Jr, Radiation effects in nuclear waste forms for high-level radioactive waste, Prog. Nucl. Energy 29 (1995) 63-127. 
  2. A.I. Orlova, Crystalline phosphates for HLW immobilization-composition, structure, properties and production of ceramics. Spark Plasma Sintering as a promising sintering technology, J. Nucl. Mater. 559 (2022) 153407. 
  3. L.O. Hagman, P. Kierkegaard, P. Karvonen, A.I. Virtanen, J. Paasivirta, The crystal structure of NaMe2IV(PO4)3; MeIV = Ge, Ti, Zr, Acta Chem. Scand. 22 (1968) 1822-1832. 
  4. V.I. Pet'kov, E.A. Asabina, A.V. Markin, N.N. Smirnova, Synthesis, characterization and thermodynamic data of compounds with NZP structure, J. Therm. Anal. Calorim. 91 (2008) 155-161. 
  5. Y. Liu, M.S. Molokeev, Q. Liu, Z. Xia, Crystal structures, phase transitions and thermal expansion properties of NaZr2(PO4)3-SrZr4(PO4)6 solid solutions, Inorg. Chem. Front. 5 (2018) 619-625. 
  6. A. Bohre, O.P. Shrivastava, Crystal chemistry of immobilization of divalent Sr in ceramic matrix of sodium zirconium phosphates, J. Nucl. Mater. 433 (2013) 486-493. 
  7. A. Bohre, O.P. Shrivastava, Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium and strontium, Int. J. Appl. Ceram. Technol. 10 (2013) 552-563. 
  8. A.I. Orlova, V.Y. Volgutov, D.A. Mikhailov, D.M. Bykov, V.A. Skuratov, V. N. Chuvil'deev, A.V. Nokhrin, M.S. Boldin, N.V. Sakharov, Phosphate Ca1/4Sr1/4Zr2(PO44)3 of the NaZr2(PO4)3 structure type: synthesis of a dense ceramic material and its radiation testing, J. Nucl. Mater. 446 (2014) 232-239. 
  9. V.I. Pet'kov, E. Asabina, V. Loshkarev, M. Sukhanov, Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization, J. Nucl. Mater. 471 (2016) 122-128. 
  10. R. Chourasia, O.P. Shrivastava, R.D. Ambashta, P.K. Wattal, Crystal chemistry of immobilization of fast breeder reactor (FBR) simulated waste in sodium zirconium phosphate (NZP) ceramic matrix, Ann. Nucl. Energy 37 (2010) 103-112. 
  11. C. Hashimoto, S. Nakayama, Immobilization of Cs and Sr to HZr2(PO4)3 using an autoclave, J. Nucl. Mater. 396 (2010) 197-201. 
  12. A. Bohre, K. Awasthi, O.P. Shrivastava, Immobilization of lanthanum, cerium, and selenium into ceramic matrix of sodium zirconium phosphate, Radiochemistry 56 (2014) 385-391. 
  13. R. Mooney, Crystal structures of a series of rare earth phosphates, J. Chem. Phys. 16 (1948) 1003. 
  14. Y. Ni, J.M. Hughes, Crystal chemistry of the monazite and xenotime structures, Am. Mineral. 80 (1995) 21-26. 
  15. N. Clavier, R. Podor, N. Dacheux, Crystal chemistry of the monazite structure, J. Eur. Ceram. Soc. 31 (2011) 941-976. 
  16. Y. Hikichi, T. Ota, K. Daimon, T. Hattori, M. Mizuno, Thermal, mechanical, and chemical properties of sintered xenotime-type RPO4 (R = Y, Er, Yb, or Lu), J. Am. Ceram. Soc. 81 (2010) 2216-2218. 
  17. L. Bois, M.J. Guittet, F. Carrot, P. Trocellier, M. Gautier-Soyer, Preliminary results on the leaching process of phosphate ceramics, potential hosts for actinide immobilization, J. Nucl. Mater. 297 (2001) 129-137. 
  18. Y. Teng, P. Zeng, Y. Huang, L. Wu, X. Wang, Hot-pressing of monazite Ce0.5Pr0.5PO4 ceramic and its chemical durability, J. Nucl. Mater. 465 (2015) 482-487. 
  19. Y. Teng, X. Wang, Y. Huang, L. Wu, P. Zeng, Hot-pressure sintering, microstructure and chemical durability of Ce0.5Eu0.5PO4 monazite ceramics, Ceram. Int. 41 (2015) 10057-10062. 
  20. N. Dacheux, N. Clavier, A.C. Robisson, O. Terra, F. Audubert, J. Lartigue, C. Guy, Immobilisation of actinides in phosphate matrices, CR. Chim. 7 (2004) 1141-1152. 
  21. S. Maes, W.Q. Zhuang, K. Rabaey, L. Alvarez-Cohen, T. Hennebel, Concomitant leaching and electrochemical extraction of rare earth elements from monazite, Environ. Sci. Technol. 51 (2017) 1654-1661. 
  22. L. Zhan, J. Wang, J. Wang, X. Zhang, Y. Wei, S. Yang, Phase evolution and microstructure of new Sr0.5Zr2(PO4)3-NdPO4 composite ceramics prepared by one-step microwave sintering, Ceram. Int. 46 (2020) 19822-19826. 
  23. J. Wang, L. Zhan, J. Wang, J. Wen, L. Fan, L. Wu, Sr/Ce co-immobilization evaluation and high chemical stability of novel Sr0.5Zr2(PO4)3-CePO4 composite ceramics for nuclear waste forms, J. Australas. Ceram. Soc. 58 (2022) 881-889. 
  24. Y. Wei, P. Luo, J. Wang, J. Wen, L. Zhan, X. Zhang, S. Yang, J. Wang, Microwave-sintering preparation, phase evolution and chemical stability of Na1-2xSrxZr22(PO4)3 ceramics for immobilizing simulated radionuclides, J. Nucl. Mater. 540 (2020) 152366. 
  25. J. Wang, J. Wang, Y. Huang, K. Zhang, Y. Li, X. Wu, Preparation of alkali-activated slag-fly ash-metakaolin hydroceramics for immobilizing simulated sodium-bearing waste, J. Am. Ceram. Soc. 98 (2015) 1393-1399. 
  26. V.S. Kurazhkovskaya, D.M. Bykov, E.Y. Borovikova, N.Y. Boldyrev, L. Mikhalitsyn, A.I. Orlova, Vibrational spectra and factor group analysis of lanthanide and zirconium phosphates MIII0.33Zr2(PO4)3, where MIII = Y, La-Lu, Vib. Spectrosc. 52 (2010) 137-143. 
  27. R.L. Frost, Y. Xi, R. Scholz, F.M. Belotti, Infrared and Raman spectroscopic characterization of the phosphate mineral kosnarite KZr2(PO4)3 in comparison with other pegmatitic phosphates, Transition Met. Chem. (London) 37 (2012) 777-782. 
  28. J.M. Leys, Y. Ji, M. Klinkenberg, P.M. Kowalski, H. Schlenz, S. Neumeier, D. Bosbach, G. Deissmann, Monazite-type SmPO4 as potential nuclear waste form: insights into radiation effects from ion-beam irradiation and atomistic simulations, Materials 15 (2022) 3434. 
  29. E.N. Silva, A.P. Ayala, I. Guedes, C.W.A. Paschoal, R.L. Moreira, C.K. Loong, L. A. Boatner, Vibrational spectra of monazite-type rare-earth orthophosphates, Opt. Mater. 29 (2006) 2247, 2230. 
  30. R.L. Frost, Y. Xi, A vibrational spectroscopic study of the phosphate mineral Wardite NaAl3(PO4)2(OH)4.2H2O, Spectrochim 93 (2012) 1557-1563. 
  31. G.T. Lapidus, F.M. Doyle, Selective thorium and uranium extraction from monazite: I. Single-stage oxalate leaching, Hydrometallurgy 154 (2015) 102-110. 
  32. M. Sugantha, N. Kumar, U.V. Varadaraju, Synthesis and leachability studies of NZP and eulytine phases, Waste Manage. (Tucson, Ariz.) 18 (1998) 275-279.
  33. R. Ravikumar, B. Gopal, Structural integrity of Cs and Sr immobilized lacunar apatite phosphate simulated ceramic wasteform Na0.9Cs0.1Pb3Sr(PO4)3 under heat and aqueous flow, J. Nucl. Mater. 558 (2022) 153388. 
  34. S.P. Kumar, B. Gopal, Synthesis and leachability study of a new cesium immobilized langbeinite phosphate: KCsFeZrP3O12, J. Alloys Compd. 615 (2014) 419-423. 
  35. X. Zhao, Y. Li, Y. Teng, H. Liu, X. Zheng, H. He, S. Wang, R. Ahuja, Exploring the relationship between Ln leaching and Ln-O binding energy in monazite (Nd, Sm, Eu), J. Am. Ceram. Soc. 105 (2021) 553-563. 
  36. B.C. Sales, C.W. White, L.A. Boatner, A comparison of the corrosion characteristics of synthetic monazite and borosilicate glass containing simulated nuclear defense waste, Nucl. Chem. Waste Manag. 4 (1983) 281-289.