DOI QR코드

DOI QR Code

Study on the effect of vacuum fusion infiltration technology on the properties of tungsten/copper joining interface

  • Hao-Jie Zhang (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Xue-qin Tian (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Xiao-Yu Ding (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Hui-Yun Zheng (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Lai-Ma Luo (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Yu-Cheng Wu (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Jian-Hua Yao (College of Mechanical Engineering, Zhejiang University of Technology)
  • 투고 : 2023.09.14
  • 심사 : 2024.01.29
  • 발행 : 2024.06.25

초록

In this paper, based on the need for high-strength connections between all-tungsten-oriented plasma materials and thermal sinking materials of copper and its alloys in nuclear fusion devices, a study on the effect of tungsten surface laser micro structuring on the interfacial bonding properties of W/Cu joints was carried out. In the experiment, the connectors were prepared by vacuum fusion infiltration technology, and the effects of microgroove structure on the mechanical and thermal conductivity of W/Cu connectors were investigated under different parameters (including microgroove pitch, microgroove depth, and microgroove taper). The maximum shear strength is 126.0 MPa when the pitch is 0.15 mm and the depth is 34 ㎛. In addition, the negative taper structure, i.e., the width of the entrance of the microstructure is smaller than the width of the interior of the microstructure, is also investigated. The shear tests show that there is an approximately linear relationship between the shear strength of W/Cu and taper. Compared with the positive taper, the shear strength of the samples with the same morphological density and depth of the tungsten surface is significantly higher.

키워드

과제정보

The authors thank the support of National MCF Energy R&D Program (Grant No. 2022YFE03140000) and Zhejiang Province "Jianbing" R&D Program for Tackling New Problems (Grant No. 2022C03021).

참고문헌

  1. C. Luo, L. Xu, L. Zong, H. Shen, S. Wei, Research status of tungsten-based plasma-facing materials: a review, Fusion Eng. Des. 190 (2023) 113487, https://doi.org/10.1016/j.fusengdes.2023.113487.
  2. T. Hirai, S. Panayotis, V. Barabash, C. Amzallag, F. Escourbiac, A. Durocher, M. Merola, J. Linke, Th Loewenhoff, G. Pintsuk, M. Wirtz, I. Uytdenhouwen, Use of tungsten material for the ITER divertor, Nucl. Mater. Energy. 9 (2016) 616-622, https://doi.org/10.1016/j.nme.2016.07.003.
  3. V. Philipps, Tungsten as material for plasma-facing components in fusion devices, J. Nucl. Mater. 415 (2011) S2-S9, https://doi.org/10.1016/j.jnucmat.2011.01.110.
  4. Y. Meng, J. Zhang, C. Duan, C. Chen, X. Feng, Y. Shen, Microstructures and properties of W-Cu functionally graded composite coatings on copper substrate via high-energy mechanical alloying method, Adv. Powder Technol. 26 (2015) 392-400, https://doi.org/10.1016/j.apt.2014.11.009.
  5. H.C. Man, K.Y. Chiu, X. Guo, Laser surface micro-drilling and texturing of metals for improvement of adhesion joint strength, Appl. Surf. Sci. 256 (2010) 3166-3169, https://doi.org/10.1016/j.apsusc.2009.11.092.
  6. Q. Cai, W. Liu, Y. Ma, H. Liu, Microstructure, residual stresses and mechanical properties of diffusion bonded tungsten-steel joint using a V/Cu composite barrier interlayer, Int. J. Refract. Met. Hard Mater. 48 (2015) 312-317, https://doi.org/10.1016/j.ijrmhm.2014.09.002.
  7. F. Wang, G.-N. Luo, J. Huang, Y. Liu, Properties improvement of atmospheric plasma sprayed tungsten coating by annealing, Surf. Coat. Technol. 358 (2019) 276-281, https://doi.org/10.1016/j.surfcoat.2018.11.046.
  8. B. Wang, J. Zhu, T. Xie, L. Fu, W. Yang, D. Li, L. Zhou, A new Cu-W bionic shell pearl multilayer structure, Surf. Coat. Technol. 461 (2023) 129433, https://doi.org/10.1016/j.surfcoat.2023.129433.
  9. R.S. Parihar, S. Gangi Setti, R.K. Sahu, Effect of sintering parameters on microstructure and mechanical properties of self-lubricating functionally graded cemented tungsten carbide, J. Manuf. Process. 45 (2019) 498-508, https://doi.org/10.1016/j.jmapro.2019.07.025.
  10. Gerald Pintsuk, Akira Hasegawa, 6.02 - tungsten as a plasma-facing material, in: R. J.M. Konings, R.E. Stoller (Eds.), Compr. Nucl. Mater, second ed., Elsevier, Oxford, 2020, pp. 19-53, https://doi.org/10.1016/B978-0-12-803581-8.11696-0.
  11. I.S. Batra, G.B. Kale, T.K. Saha, A.K. Ray, J. Derose, J. Krishnan, Diffusion bonding of a Cu-Cr-Zr alloy to stainless steel and tungsten using nickel as an interlayer, Mater. Sci. Eng. A. 369 (2004) 119-123, https://doi.org/10.1016/j.msea.2003.10.296.
  12. C. Sun, S. Wang, W. Guo, W. Shen, C. Ge, Bonding interface of W-CuCrZr Explosively Welded composite Plates for plasma facing components, J. Mater. Sci. Technol. 30 (2014) 1230-1234, https://doi.org/10.1016/j.jmst.2014.11.014.
  13. M. Tokitani, Y. Hamaji, Y. Hiraoka, S. Masuzaki, H. Tamura, H. Noto, T. Tanaka, T. Muroga, A. Sagara, Deformation and fracture behavior of the W/ODS-Cu joint fabricated by the advanced brazing technique, Fusion Eng. Des. 146 (2019) 1733-1736, https://doi.org/10.1016/j.fusengdes.2019.03.027.
  14. Z. Liu, A. Wang, P. Liu, J. Xie, Investigation on the WC/Cu interfacial bonding properties: first-principles prediction and experimental verification, Int. J. Refract. Met. Hard Mater. 106 (2022) 105872, https://doi.org/10.1016/j.ijrmhm.2022.105872.
  15. L. Peng, Y. Mao, Y. Zhang, L. Xi, Q. Deng, G. Wang, Microstructural and mechanical characterizations of W/CuCrZr and W/steel joints brazed with Cu-22TiH2 filler, J. Mater. Process. Technol. 254 (2018) 346-352, https://doi.org/10.1016/j.jmatprotec.2017.11.056.
  16. L. Sun, X. Song, Y. Dong, J. Zou, X. Li, L. Ni, L. Gao, S. Liang, Microstructure and strength of diffusion bonded 304 stainless steel/tungsten joints using different interlayers, J. Manuf. Process. 65 (2021) 428-434, https://doi.org/10.1016/j.jmapro.2021.03.050.
  17. C. Chu, Q. Zhang, H. Zhuo, Z. Zhang, Y. Zhu, Y. Fu, Investigation on the ablation behavior of cemented tungsten carbide by a nanosecond UV laser, J. Manuf. Process. 71 (2021) 461-471, https://doi.org/10.1016/j.jmapro.2021.09.038.
  18. V. Furlan, A.G. Demir, B. Previtali, Micro and sub-micron surface structuring of AZ31 by laser re-melting and dimpling, Opt Laser. Technol. 75 (2015) 164-172, https://doi.org/10.1016/j.optlastec.2015.06.030.
  19. G. Yang, Y. Hao, W. Song, Y. Ma, Effects of some parameters on formation and structure of infiltrated (surface) layer prepared by vacuum infiltration casting technique, Surf. Coat. Technol. 201 (2006) 1711-1717, https://doi.org/10.1016/j.surfcoat.2006.02.054.
  20. K. Zhou, W.G. Chen, J.J. Wang, G.J. Yan, Y.Q. Fu, W-Cu composites reinforced by copper coated graphene prepared using infiltration sintering and spark plasma sintering: a comparative study, Int. J. Refract. Met. Hard Mater. 82 (2019) 91-99, https://doi.org/10.1016/j.ijrmhm.2019.03.026.
  21. M. Ghasri-Khouzani, X. Li, A.A. Bogno, Z. Chen, J. Liu, H. Henein, A.J. Qureshi, Fabrication of aluminum/stainless steel bimetallic composites through a combination of additive manufacturing and vacuum-assisted melt infiltration casting, J. Manuf. Process. 69 (2021) 320-330, https://doi.org/10.1016/j.jmapro.2021.07.047.
  22. M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M.R. Shankar, Comparing microstructure and hardness of direct metal laser sintered AlSi10Mg alloy between different planes, J. Manuf. Process. 37 (2019) 274-280, https://doi.org/10.1016/j.jmapro.2018.12.005.
  23. A. Simchi, F. Petzoldt, H. Pohl, On the development of direct metal laser sintering for rapid tooling, J. Mater. Process. Technol. 141 (2003) 319-328, https://doi.org/10.1016/S0924-0136(03)00283-8.
  24. T. Lu, C. Chen, P. Li, C. Zhang, W. Han, Y. Zhou, C. Suryanarayana, Z. Guo, Enhanced mechanical and electrical properties of in situ synthesized nano-tungsten dispersion-strengthened copper alloy, Mater. Sci. Eng. A. 799 (2021) 140161, https://doi.org/10.1016/j.msea.2020.140161.
  25. M. Li, S.J. Zinkle, 4.20 - physical and mechanical properties of copper and copper alloys, in: R.J.M. Konings (Ed.), Compr. Nucl. Mater., Elsevier, Oxford, 2012, pp. 667-690, https://doi.org/10.1016/B978-0-08-056033-5.00122-1.
  26. D. Jiang, J. Long, J. Han, M. Cai, Y. Lin, P. Fan, H. Zhang, M. Zhong, Comprehensive enhancement of the mechanical and thermo-mechanical properties of W/Cu joints via femtosecond laser fabricated micro/nano interface structures, Mater. Sci. Eng. A. 696 (2017) 429-436, https://doi.org/10.1016/j.msea.2017.04.063.
  27. E. de Wilde, I. Bellemans, M. Campforts, M. Guo, B. Blanpain, N. Moelans, K. Verbeken, Sessile drop evaluation of high temperature copper/spinel and slag/spinel interactions, Trans. Nonferrous Met. Soc. China. 26 (2016) 2770-2783, https://doi.org/10.1016/S1003-6326(16)64344-3.