DOI QR코드

DOI QR Code

The effects of different factors on obstacle strength of irradiation defects: An atomistic study

  • Pan-dong Lin (Ministry of Education, Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University) ;
  • Jun-feng Nie (Institute of Nuclear and New Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University) ;
  • Yu-peng Lu (Ministry of Education, Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University) ;
  • Gui-yong Xiao (Ministry of Education, Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University) ;
  • Guo-chao Gu (Ministry of Education, Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University) ;
  • Wen-dong Cui (Institute of Nuclear and New Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University) ;
  • Lei He (Institute of Nuclear and New Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University)
  • 투고 : 2023.08.16
  • 심사 : 2024.01.24
  • 발행 : 2024.06.25

초록

In this work we study the effects of different factors of dislocation loop on its obstacle strength when interacting with an edge dislocation. At first, the interaction model for dislocation and dislocation loop is established and the full and partial absorption mechanism is obtained. Then, the effect of temperature, size and burgers vector of dislocation loop are investigated. The relation between the obstacle strength and irradiation dose has been established, which bridges the irradiation source and microscale properties. Except that, the obstacle strength of C, Cr, Ni, Mn, Mo and P decorated dislocation loop is studied. Results show that the obstacle strength for dislocation loop decorated by alloy element decreases in the sequence of Cr, Ni, Mn, C, P and Mo, which could be used to help parameterize and validate crystal plasticity finite element model and therein integrated constitutive laws to enable accounting for irradiation-induced chemical segregation effects.

키워드

과제정보

This work was supported by Modular HTGR Super-critical Power Generation Technology collaborative project between CNNC and Tsinghua University Project [grant number ZHJTIZYFGWD20201], the National Key R&D Plan of China [grant number 2020YFB1901600], and the National Science Technology Major Project of China [grant numbers 2017ZX06902012 and 2017ZX06901024] and CNNC Youth Elite Scientific Research Project.

참고문헌

  1. C. Li, G. Shu, W. Liu, Y. Duan, Effects of neutron irradiation on elastic modulus of RPV steel, Ann. Nucl. Energy 134 (2019) 20-26.
  2. J.C. Van Duysen, G. Meric De Bellefon, 60th Anniversary of electricity production from light water reactors: historical review of the contribution of materials science to the safety of the pressure vessel, J. Nucl. Mater. 484 (2017) 209-227.
  3. G.R. Odette, G.E. Lucas, Embrittlement of nuclear reactor pressure vessels, JOM 53 (7) (2001) 18-22.
  4. C.L. Li, G.G. Shu, B. Xu, Y. Liu, J. Chen, W. Liu, Effects of neutron irradiation on magnetic properties of reactor pressure vessel steel, Nucl. Eng. Des. 342 (2019) 128-132.
  5. H. Trinkaus, B.N. Singh, A.J.E. Foreman, Segregation of cascade induced interstitial loops at dislocations: possible effect on initiation of plastic deformation, J. Nucl. Mater. 251 (1997) 172-187.
  6. B.N. Singh, A.J.E. Foreman, H. Trinkaus, Radiation hardening revisited: role of intracascade clustering, J. Nucl. Mater. 249 (2-3) (1997) 103-115.
  7. S.A. Fabritsiev, A.S. Pokrovsky, Effect of irradiation temperature on microstructure, radiation hardening and embrittlement of pure copper and copper-based alloy, J. Nucl. Mater. 367 (2007) 977-983.
  8. D.J. Bacon, Y.N. Osetsky, Z. Rong, Computer simulation of reactions between an edge dislocation and glissile self-interstitial clusters in iron, Phil. Mag. 86 (25-26) (2006) 3921-3936.
  9. L.X. Jia, X.F. He, Y.K. Dou, D.J. Wang, S. Wu, H. Cao, W. Yang, The effects of interaction geometry on pinning strength induced by interstitial dislocation loop in BCC-Fe, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 456 (2019) 103-107.
  10. X.Y. Liu, S.B. Biner, Molecular dynamics simulations of the interactions between screw dislocations and self-interstitial clusters in body-centered cubic Fe, Scripta Mater. 59 (1) (2008) 51-54.
  11. D. Terentyev, M. Klimenkov, L. Malerba, Confinement of motion of interstitial clusters and dislocation loops in BCC Fe-Cr alloys, J. Nucl. Mater. 393 (1) (2009) 30-35.
  12. B. Gomez-Ferrer, C. Dethloff, E. Gaganidze, L. Malerba, C. Hatzoglou, C. Pareige, Nano-hardening features in high-dose neutron irradiated Eurofer97 revealed by atom-probe tomography, J. Nucl. Mater. 537 (2020).
  13. F. Bergner, C. Pareige, V. Kuksenko, L. Malerba, P. Pareige, A. Ulbricht, A. Wagner, Critical assessment of Cr-rich precipitates in neutron-irradiated Fe-12at%Cr: comparison of SANS and APT, J. Nucl. Mater. 442 (1-3) (2013) 463-469.
  14. A.V. Bakaev, D.A. Terentyev, E.E. Zhurkin, Effect of segregation of Ni and Cr at dislocation loops on their interaction with gliding dislocations in irradiated Fe-NiCr BCC alloys, J. Surf. Ingestig. 12 (4) (2018) 783-791.
  15. D. Terentyev, A. Bakaev, E.E. Zhurkin, Effect of carbon decoration on the absorption of 〈100〉 dislocation loops by dislocations in iron, J. Phys. Condens. Matter 26 (16) (2014) 165402.
  16. D. Terentyev, X. He, G. Bonny, A. Bakaev, E. Zhurkin, L. Malerba, Hardening due to dislocation loop damage in RPV model alloys: role of Mn segregation, J. Nucl. Mater. 457 (2015) 173-181.
  17. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1-19.
  18. M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, M. Asta, Development of new interatomic potentials appropriate for crystalline and liquid iron, Philos. Mag. A 83 (35) (2003) 3977-3994.
  19. D.J. Hepburn, G.J. Ackland, Metallic-covalent interatomic potential for carbon in iron, Phys. Rev. B 78 (16) (2008).
  20. S.M. Eich, D. Beinke, G. Schmitz, Embedded-atom potential for an accurate thermodynamic description of the iron-chromium system, Comput. Mater. Sci. 104 (2015) 185-192.
  21. Y.-M. Kim, Y.-H. Shin, B.-J. Lee, Modified embedded-atom method interatomic potentials for pure Mn and the Fe-Mn system, Acta Mater. 57 (2) (2009) 474-482.
  22. J. Wang, H. Kwon, H.S. Kim, B.-J. Lee, A neural network model for high entropy alloy design, npj Comput. Mater. 9 (1) (2023).
  23. C. Wu, B.-J. Lee, X. Su, Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems, Calphad 57 (2017) 98-106.
  24. H. Liem, J. Cabanillas-Gonzalez, P. Etchegoin, D.D.C. Bradley, Glass transition temperatures of polymer thin films monitored by Raman scattering, J. Phys. Condens. Matter 16 (6) (2004) 721-728.
  25. Y.N. Osetsky, D.J. Bacon, An atomic-level model for studying the dynamics of edge dislocations in metals, Model. Simulat. Mater. Sci. Eng. 11 (4) (2003) 427.
  26. P. Lin, J. Nie, M. Liu, Molecular dynamics study of the interactions between the 1/2 [-1-11] edge dislocation and the [010] dislocation loop in BCC-Fe, J. Tsinghua Univ. (Sci. Technol.) 62 (12) (2022) 1.
  27. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Model. Simulat. Mater. Sci. Eng. 18 (1) (2010).
  28. A. Stukowski, V.V. Bulatov, A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces, Model. Simulat. Mater. Sci. Eng. 20 (8) (2012) 085007.
  29. D.J. Bacon, Y.N. Osetsky, Mechanisms of hardening due to copper precipitates in α-iron, Phil. Mag. 89 (34-36) (2009) 3333-3349.
  30. G. Bonny, A. Bakaev, D. Terentyev, The combined effect of carbon and chromium enrichment on (100) loop absorption in iron, Comput. Mater. Sci. 211 (2022) 8.
  31. Z. Rong, Y.N. Osetsky, D.J. Bacon, A model for the dynamics of loop drag by a gliding dislocation, Phil. Mag. 85 (14) (2005) 1473-1493.
  32. D. Terentyev, Y.N. Osetsky, D.J. Bacon, Competing processes in reactions between an edge dislocation and dislocation loops in a body-centred cubic metal, Scripta Mater. 62 (9) (2010) 697-700.
  33. D. Terentyev, P. Grammatikopoulos, D.J. Bacon, Y.N. Osetsky, Simulation of the interaction between an edge dislocation and a <100> interstitial dislocation loop in alpha-iron, Acta Mater. 56 (18) (2008) 5034-5046.
  34. P.D. Lin, J.F. Nie, M.D. Liu, Multiscale crystal plasticity finite element model for investigating the irradiation hardening and defect evolution mechanism of A508-3 steel, Nucl. Mater. Energy 32 (2022) 16.
  35. D.J. Bacon, Y.N. Osetsky, D. Rodney, Dislocation-obstacle interactions at the atomic level, in: J.P. Hirth, L. Kubin (Eds.), Dislocations in Solids, vol. 15, Elsevier Science Bv, Amsterdam, 2009, pp. 1-90.
  36. Q. Wan, G. Shu, R. Wang, H. Ding, X. Peng, Q. Zhang, J. Lei, Study on the microstructure evolution of A508-3 steel under proton irradiation, Acta Metall. Sin. 48 (8) (2012) 929.
  37. G. Bonny, D. Terentyev, J. Elena, A. Zinovev, B. Minov, E.E. Zhurkin, Assessment of hardening due to dislocation loops in bcc iron: overview and analysis of atomistic simulations for edge dislocations, J. Nucl. Mater. 473 (2016) 283-289.
  38. D. Terentyev, L. Malerba, D.J. Bacon, Y.N. Osetsky, The effect of temperature and strain rate on the interaction between an edge dislocation and an interstitial dislocation loop in α-iron, J. Phys.-Condes. Matter 19 (45) (2007) 13.
  39. J. Byggmastar, F. Granberg, Dynamical stability of radiation-induced C15 clusters in iron, J. Nucl. Mater. 528 (2020) 6.
  40. L. Malerba, M.C. Marinica, N. Anento, C. Bjorkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, C. S. Becquart, Comparison of empirical interatomic potentials for iron applied to radiation damage studies, J. Nucl. Mater. 406 (1) (2010) 19-38.