과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant (No. RS-2022-00144202) and by the Innovative Small Modular Reactor Development Agency grant (No. RS-2023-00259516) funded by the Korean government.
참고문헌
- IAEA, The Fukushima Daiichi Accident, 1 - 4, 2015.
- TEPCO, Information Portal for the Fukushima Daiichi Accident Analysis and Decommissioning Activities, 2022. https://fdada.info/en/home2/. (Accessed 31 August 2023).
- USNRC, ML11171A416 - Westinghouse AP1000 Design Control Document Rev. 19 - Tier 2, 2011 (Chapter 19) - Probabilistic Risk Assessment - Appendix 19D Equipment Survivability Assessment (36 page(s), 6/13/2011, https://www.nrc.gov/docs/ML1117/ML11171A500.html. (Accessed 31 August 2023).
- V. Sobes, B. Hiscox, E. Popov, et al., AI-based design of a nuclear reactor core, Sci. Rep. 11 (2021) 19646, https://doi.org/10.1038/s41598-021-98037-1.
- G.P. Choi, et al., Estimation of LOCA break size using cascaded fuzzy neural networks, Nucl. Eng. Technol. 49 (3) (2017) 495-503. https://doi.org/10.1016/j.net.2016.11.001
- M.I. Radaideh, et al., Neural-based time series forecasting of loss of coolant accidents in nuclear power plants, Expert Syst. Appl. 160 (2020) 113699, https://doi.org/10.1016/j.eswa.2020.113699.
- Y.H. Chae, S.G. Kim, H. Kim, J.T. Kim, P.H. Seong, A methodology for diagnosing FAC induced pipe thinning using accelerometers and deep learning models, Ann. Nucl. Energy 143 (2020) 107501.
- J. Bae, J.W. Park, S.J. Lee, Limit surface/states searching algorithm with a deep neural network and Monte Carlo dropout for nuclear power plant safety assessment, Appl. Soft Comput. 124 (2022) 109007.
- Y. Chae, C. Lee, S. Han, P. Seong, Graph neural network based multiple accident diagnosis in nuclear power plants: data optimization to represent the system configuration, Nucl. Eng. Technol. (2022) 54.
- G. Lee, S.J. Lee, C. Lee, A convolutional neural network model for abnormality diagnosis in a nuclear power plant, Appl. Soft Comput. 99 (2021).
- S. Ryu, B. Jeon, H. Seo, M. Lee, J.-W. Shin, Y. Yu, Development of Deep Autoencoder-Based Anomaly Detection System for HANARO, Nuclear Engineering and Technology, 2022.
- S. Ryu, H. Kim, S.G. Kim, K. Jin, J. Cho, J. Park, Probabilistic deep learning model as a tool for supporting the fast simulation of a thermal-hydraulic code, Expert Syst. Appl. (2022) 200.
- J. She, et al., Diagnosis and prediction for loss of coolant accidents in nuclear power plants using deep learning methods, Front. Energy Res. (2021), https://doi.org/10.3389/fenrg.2021.665262.
- J.H. Shin, J.M. Kim, S.J. Lee, Abnormal state diagnosis model tolerant to noise in plant data, Nucl. Eng. Technol. 53 (2021) 1181-1188. https://doi.org/10.1016/j.net.2020.09.025
- J.S. Kang, S.J. Lee, Concept of an intelligent operator support system for initial emergency responses in nuclear power plants, Nucl. Eng. Technol. 54 (2022) 2453-2466. https://doi.org/10.1016/j.net.2022.02.010
- K. Hossny, W. Villanueva, H.D. Wang, Distinctive physical insights driven from machine learning modelling of nuclear power plant severe accident scenario propagation, Sci. Rep. 13 (2023) 930, https://doi.org/10.1038/s41598-023-28205-y.
- J.H. Song, K.S. Ha, A simulation and machine learning informed diagnosis of the severe accidents, Nucl. Eng. Des. 395 (2022) 111881, https://doi.org/10.1016/j.nucengdes.2022.111881.
- S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- B. Lindemann, et al., A survey on long short-term memory networks for time series prediction, Procedia CIRP 99 (2021) 650-655, https://doi.org/10.1016/j.procir.2021.03.088.
- A. Sagheer, M. Kotb, Time series forecasting of petroleum production using deep LSTM recurrent networks, Neurocomputing 323 (2019) 203-213, https://doi.org/10.1016/j.neucom.2018.09.082.
- SNL, SAND2018-13560 O, MELCOR Computer Code Manuals 2 (2018). Reference Manual Version 2.2.11932.
- M. Pellegrini, et al., Main findings, remaining Uncertainties, and lessons learned from the OECD/NEA BSAF project, Nucl. Technol. (2020), https://doi.org/10.1080/00295450.2020.1724731.
- T. Sevon, A melcor model of Fukushima Daiichi unit 3 accident, Nucl. Eng. Des. 284 (2015) 80-90, https://doi.org/10.1016/j.nucengdes.2014.11.038.
- S.I. Kim, et al., Analysis of Fukushima unit 2 accident considering the operating conditions of RCIC system, Nucl. Eng. Des. 298 (2016) 183-191. https://doi.org/10.1016/j.nucengdes.2015.12.024
- S. He, et al., A deep-learning reduced-order model for thermal hydraulic characteristics rapid estimation of steam generators, Int. J. Heat Mass Tran. 198 (2022) 123424.
- N.W. Porter, Wilks' formula applied to computational tools: a practical discussion and verification, Ann. Nucl. Energy 133 (2019) 129-137. https://doi.org/10.1016/j.anucene.2019.05.012
- Z. Che, S. Purushotham, K. Cho, et al., Recurrent neural networks for multivariate time series with missing values, Sci. Rep. 8 (2018) 6085, https://doi.org/10.1038/s41598-018-24271-9.
- F. Emmert-Streib, et al., An introductory review of deep learning for prediction models with big data, Front. Artif. Intell. (2020), https://doi.org/10.3389/frai.2020.00004.
- M. Abadi, et al., Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, 2016 arXiv preprint arXiv:1603.04467.
- Diederik P. Kingma, Jimmy Ba. Adam: A Method for Stochastic Optimization, 2015. https://doi.org/10.48550/arXiv.1412.6980. Published as a conference paper at ICLR 2015.
- M. Hosoda, S. Tokonami, H. Tazoe, et al., Activity concentrations of environmental samples collected in Fukushima Prefecture immediately after the Fukushima nuclear accident, Sci. Rep. 3 (2013) 2283, https://doi.org/10.1038/srep02283.