Acknowledgement
This work was supported by National Natural Science Foundation of China (NSFC) under Project Numbers 11905074, and the Interdisciplinary program of Wuhan National High Magnetic Field Center (Grant No. WHMFC202142).
References
- M.S. Sullivan, R.M. Jones, L.S. Cowie, et al., Phys. Rev. Accel. Beams 24 (2021) 082001.
- D. Angal-Kalinin, A. Bainbridge, A.D. Brynes, et al., Design,specifications, and first beam measurements of the compact linear accelerator for research and applications front end, Phys. Rev. Accel. Beams. 23 (2020) 044801.
- T.N. Hu, Y.J. Pei, G.Y. Feng, Electron beamline of a Linac-based injector applied to a compact free electron laser-terahertz radiation source, Jpn. J. Appl. Phys. 57 (10) (2018) 100310.
- V. Paramonov, S. Philipp, I. Rybakov, et al., Design of an L-band normally conducting RF gun cavity for high peak and average RF power, Nucl. Instrum. Methods Phys. Res. A. 854 (2017) 111-126.
- X.C. Lin, H. Zha, J.R. Shi, et al., Fabrication, tuning, and high-gradient testing of an X-band traveling-wave accelerating structure for VIGAS, Nucl. Sci. Tech. 33 (2022) 102.
- A. Grudiev, S. Calatroni, W. Wuensch, New local field quantity describing the high gradient limit of accelerating structures, Phys. Rev. ST Accel. Beams. 12 (2009) 102001.
- N. Catal'an Lasheras, T. Argyropoulos, D. Esperante Pereira, et al., Commissioning of XBox-3: a very high capacity X-band test stand, in: 28th Linear Accelerator Conf. (LINAC'16), September, , MI, USA, 2016, pp. 25-30. Paper 568, East Lansing.
- A. Hassanein, Z. Insepov, J. Norem, et al., Effects of surface damage on rf cavity operation, Phys. Rev. ST Accel. Beams. 9 (2006) 062001.
- F. Wang, C. Adolphsen, C. Nantista, Study of radio frequency breakdown in pressurized L-band waveguide for the International Linear Collider, Appl. Phys. Lett. (2013) 104106.
- X.W. Wu, J.R. Shi, H.B. Chen, et al., High-gradient breakdown studies of an X-band Compact Linear Collider prototype structure, Phys. Rev. Accel. Beams. 20 (2017) 052001.
- T. Abe, T. Kageyama, H. Sakai, et al., Breakdown study based on direct in situ observation of inner surfaces of an rf accelerating cavity during a high-gradient test, Phys. Rev. Accel. Beams. 19 (2016) 102001.
- M.D. Forno, V. Dolgashev, G. Bowden, et al., Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures, Phys. Rev. Accel. Beams. 19 (2016) 051302.
- M. Jacewicz, V. Ziemann, T. Ekelof, et al., Spectrometers for RF breakdown studies for CLIC, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 828 (2016) 63-71. https://doi.org/10.1016/j.nima.2016.05.031
- A. Degiovanni, S. Doebert, W. Farabolini, et al., Diagnostics and analysis techniques for high power X-band accelerating structures, in: 27th Linear Accelerator Conference, 2014. Geneva, Switzerland, Aug 31- Sep. 5.
- C. Obermair, T. Cartier-Michaud, A. Apollonio, et al., Explainable machine learning for breakdown prediction in high gradient RF cavities, Phys. Rev. Accel. Beams. 25 (2022) 104601.
- A. Palaia, V. Dolgashev, J. Lewandowski, et al., Diagnostics of RF breakdowns in high-gradient accelerating structures, in: 10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators, 2011. Hamburg, Germany.
- J.G. Navarro, Breakdown studies for high gradient RF warm Technology, in: CLIC and Hadron Therapy Linacs (Ph.D. Thesis), Valencia University, Valencia, Spain, 2016.
- B. Woolley, High Power X-Band RF Test Stand Development and High Power Testing of the CLIC Crab Cavity, Ph.D. thesis), Lancaster University, Lancaster, UK, 2015.
- T.G. Lucas, High Field Phenomenology in Linear Accelerators for the Compact Linear Collider (Ph.D. Thesis), School of Physics, University of Melbourne, Melbourne, Australia, 2018.
- C. Tennant, A. Carpenter, T. Powers, et al., Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory, Phys. Rev. Accel. Beams. 23 (2020) 114601.
- E. Fol, R. Tom'as, J.C. De Portugal, et al., Detection of faulty beam position monitors using unsupervised learning, Phys. Rev. Accel. Beams. 23 (2020) 102805.
- O. Convery, L. Smith, Y. Gal, et al., Uncertainty quantification for virtual diagnostic of particle accelerators, Phys. Rev. Accel. Beams. 24 (2021) 074602.
- H.K. Liu, T. Jia, L. Mou, et al., Improved traveling wave based fault location scheme for transmission lines, in: 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2015, pp. 26-29. Changsha, China, November.
- C.Q. Cui, Y.H. Cheng, B. Liu, et al., Fault location approach for teed transmission line independent of wave speed, IOP Conf. Ser. Earth Environ. Sci. 634 (2021) 012049. https://doi.org/10.1088/1755-1315/634/1/012049
- T.N. Hu, H.M. Wang, Y.F. Zeng, et al., Fault locating for traveling-wave accelerator based on transmission line theory, Nucl. Sci. Tech. 34 (2023) 116.
- T.N. Hu, J.Y. Li, Y.J. Pei, et al., Indirect estimations of energy and energy spread for a compact free electron laser-terahertz pre-injector using RF measuring parameters, Nucl. Instrum. Methods Phys. Res., Sect. A 1016 (2021) 165775.
- T.N. Hu, Y.J. Pei, G.Y. Feng, Bunch length evaluation for typical beam injectors based on RF-phasing techniques, Nucl. Instrum. Methods Phys. Res., Sect. A 916 (2019) 87-93. https://doi.org/10.1016/j.nima.2018.10.200
- Q.R. Yan, Circuit Theory[M], Chinese High Education Press, Beijing, 2018, pp. 287-290 (In Chinese).