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A B S T R A C T

Nuclear energy plays a crucial role in energy supply in the 21st century, and more and more Nuclear Power
Plants (NPPs) will be in operation to contribute to the development of human society. However, as a typical
complex system engineering, the operation and development of NPPs require efficient and stable control
methods to ensure the safety and efficiency of nuclear power generation. Reinforcement learning (RL) aims at
learning optimal control policies via maximizing discounted long-term rewards. The reward-oriented learning
paradigm has witnessed remarkable success in many complex systems, such as wind power systems, electric
power systems, coal fire power plants, robotics, etc. In this work, we try to present a systematic review of
the applications of RL on these complex systems, from which we believe NPPs can borrow experience and
insights. We then conduct a block-by-block investigation on the application scenarios of specific tasks in NPPs
and carried out algorithmic research for different situations such as power startup, collaborative control, and
emergency handling. Moreover, we discuss the possibilities of further application of RL methods on NPPs and
detail the challenges when applying RL methods on NPPs. We hope this work can boost the realization of
intelligent NPPs, and contribute to more and more research on how to better integrate RL algorithms into
NPPs.

1. Introduction

As the world’s population grows, the demand for energy for human
production and survival increases considerably [1–3]. More and more
greenhouse gases are produced into the atmosphere to meet the en-
ergy demands of human society, resulting in climate change and the
greenhouse effect. To mitigate the effects of climate change, the world
must rapidly reduce its reliance on fossil fuels and its emissions of
greenhouse gases. Nuclear energy is low-carbon and can be installed
on a massive scale within the required timeframe, providing the world
with clean, reliable, and inexpensive electricity. Nuclear Power Plants
(NPPs) [4–6] emit no greenhouse gases during operation, and over the
course of its life cycle, nuclear fuel produces roughly the same amount
of carbon dioxide-equivalent emissions per unit of electricity as wind
and one-third of the emissions per unit of electricity when compared
to solar.

‘‘The Report On The Development of China’s Nuclear Energy 2021’’
[7] shows that during the ‘‘13th Five-Year Plan’’ period, China’s nuclear
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power units will maintain safe and stable operation. Currently, 20 new
commercial nuclear power units have been put into operation. The
newly installed capacity has reached 23.447 million kilowatts, and the
total number of commercial nuclear power units has reached 48 units.
The installed capacity is 49.88 million kilowatts, ranking third in the
world in installed capacity and the second in power generation in 2020.
11 new nuclear power units with an installed capacity of 12.604 million
kilowatts have been built, ranking first in the world in terms of the
number of units under construction and installed capacity for many
years.

In 2020, China’s nuclear power generation reached 366.243 billion
kWh, with an increment of 5.02% year-on-year, accounting for about
4.94% of the country’s cumulative power generation. Compared with
coal-fired power generation, the annual nuclear power generation is
equivalent to reducing the burning of standard coal by 104.7419 mil-
lion tons, reducing the emission of 274.4238 million tons of carbon
dioxide (CO2), 890,300 tons of sulfur dioxide, and 775,100 tons of
nitrogen oxides, equivalent to afforestation of 771,400 hectares. Over
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Fig. 1. Average life-cycle carbon dioxide-equivalent emissions for different electricity generators [8].

the past decade, nuclear power generation has continued to grow,
making important contributions to ensuring power supply security and
energy conservation, and emission reduction [7].

During the ‘‘14th Five-Year Plan’’ and in the medium and long
term, China’s nuclear power will shift to a new stage of positive and
orderly development on the premise of ensuring safety. Under the
background of carbon peaking and carbon neutrality, the clean and
low-carbon transformation process of China’s energy and power system
will be further accelerated. As a clean energy with near zero emissions
shown in Fig. 1, nuclear energy has a broad possibility of being fur-
ther developed and publicized. The technology on nuclear energy is
also expected to maintain rapid development. In the current situation,
China’s independent third-generation nuclear power will achieve large-
scale batch development according to the approval rhythm of 6 to 8
units per year. It is estimated that by 2025, the installed capacity of
nuclear power in China will be about 70 million kilowatts, along with
about 50 million kilowatts being under construction.

In the last 50 years, from 70 gigatonnes (Gt) to 78 Gt CO2 emission
has been effectively avoided with the service of NPPs globally. At the
end of 2020, more than 400 nuclear power reactors are working safely
in 32 countries, with a total power capacity of 392.6 GW. Even during
the coronavirus disease (COVID) pandemic, none of the operating
NPPs in these 32 countries with operating NPPs reported that the
pandemic had induced an operational event that may impact the safety
and reliability of the NPP operation. In 2020, nuclear power supplied
2553.2 terawatt-hours of GHG emission-free electricity accounting for
about 10% of total global electricity generation and nearly a third of
the world’s low carbon electricity production.

As the key to the success of the decarbonization of the electricity
sector, nuclear power provides reliable low-carbon power to the grid
around the clock. With the global increase in electricity demand to
satisfy the needs of the world’s population, nuclear power will be
necessary.

The utilization and promotion of NPPs require a high technical
threshold, which brings great challenges to the popularization of NPPs
and electricity generation with nuclear energy. As a typical man-
machine-network integration system [9–11], great complexity is shown
in many aspects of the nuclear industry.

In NPPs, there are many operations that require a lot of decision-
making. At the current stage, traditional manual operations or more
classical control methods are widely used, such as proportional-integral
-differential (PID) controllers [12–18], programmable logic controllers
(PLCs) [19–22], and field-programmable gate arrays (FPGAs) [23–
25]. Traditional PID control is often designed for a single subsystem
with a single control variable [26]. In the more complex application
scenario of NPPs, indicators of the PID controller, such as overshoot and
response speed, are often unsatisfactory. A large number of power plant
parameters need to be tested and monitored, which poses many chal-
lenges to operators and traditional controllers. From this perspective,
it is imperative to introduce intelligent processing and control methods
into NPPs, which is also emphasized in a recent paper [27].

In recent years, with the enhancement of computer computing
capability, the generation and collection of a large amount of data,
and the proposal of new algorithms, deep learning has made great
progress and has exerted its own advantages in many fields [28–
34]. Among them, reinforcement learning (RL) [35–37] is a typical
and important machine learning method. Deep reinforcement learning
(DRL), which combines RL with deep learning (e.g., deep neural net-
works), shines in the fields of robots, wind turbines, and fire control.
This is because RL requires constant interaction with the environment
in its mechanism design. The RL agent learns the best policy under
specific observations during the process of continuous trial and error,
aiming at maximizing the cumulative returns. RL can implicitly model
many complex problems. As a class of systems that are widely studied,
complex systems have strong coupling relationships among their parts,
and the controlled objects often contain multiple variables and have
the characteristics of nonlinearity. At this time, RL can achieve better
performance in the face of random sequential decision-making tasks, so
it has been widely used in many complex system tasks, such as wind,
fire, coal, power grids, and robots.

We set our focus firstly on complex systems because there is cur-
rently little research on integrating RL algorithms into NPPs. Mean-
while, NPPs are typically complex systems in nature, and there are
many studies on combining RL methods with complex systems. We,
therefore, believe that some strongly related reviews on complex sys-
tems can bring some new insights into the future application of RL
algorithms in NPPs.
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Fig. 2. Main structure of this paper.

1.1. Our contribution and organization

This paper mainly investigates and summarizes the main application
of reinforcement learning, a widely used algorithm model in machine
learning, in NPPs. Considering the extensive and exciting applications
of existing RL work in various complex system tasks, we first investigate
the use of RL algorithms in power grids, heat energy, wind energy, and
robotics. We then investigate the relationship between complex systems
and NPPs, where we believe that the successful and wide application
of RL on these complex systems can bring some insights to NPPs. We
further explore how we will apply existing RL algorithms to various
parts of NPPs under the existing models to promote the construction of
future smart factories. Our main contributions are:

• We introduce mainstream RL algorithms and frameworks, and
point out the advantages and limitations of RL algorithms com-
pared to traditional control algorithms.

• We also research the application of RL in various complex systems
and combine it with the existing work to put forward a further
prospect for the migration of RL to NPPs in the future.

• We investigate the application of RL in NPPs today, classify them
according to various functions and modules of NPPs, and explore
the feasibility of RL algorithms in these tasks.

This article will be expanded in the following aspects (see Fig. 2):
Section 2 will investigate and introduce the mainstream RL methods.
We classify them into value-based methods and policy-based methods
and point out the advantages and disadvantages of different algorithms.
Section 3 investigates the related applications of RL algorithms in com-
plex systems, including power grids, coal, wind power, and robotics.
Through the study of these applications, we can further pave the way
and introduce the application of RL algorithms in NPPs. Section 4
investigates various applications of RL methods in NPPs, where we
classify them according to different processes or tasks of NPPs, such
as power startup, thermal control, cooperative operation, emergency
handling processes, etc. Section 5 discusses and studies the future
development of NPPs and how RL will play a further role in the NPPs.
Section 6 concludes with a well-rounded description to better conduct
the whole part of the article.

As there are many abbreviations in this article, we refer readers
to a checklist that explains the meanings of adopted abbreviations in
Table 3.

2. Background

2.1. Complex system

Industrial complex systems generally refer to large-scale systems
represented by water energy, wind energy, power grids or robots [38,

39]. The complexity is determined by the number of components,
the complexity of interfaces, and the degree of nesting in structure
components, which are often more difficult to analyze and control than
simple systems [40]. It has the following characteristics:

• Nonlinearity: The degree of linearity is often regarded as an
important condition for measuring the degree of complexity [41].
Generally speaking, we cannot use the superposition method to
control the system that does not have linear properties, and
the nonlinearity in the control equation manifests that a slight
deviation in the initial condition value can lead to a completely
different macroscopic result [42].

• Feedback ability: This kind of feedback is not only reflected in
the design of complex systems with feedback modules for exter-
nal input, but more importantly, the mutual feedback function
between internal individuals [43]. Taking the complex system of
the robot as an example, each part of the robot will adjust its
own motion according to other parts, and its adjacent parts can
partially reflect its early behavior of it. By means of feedback, all
low-level parts can maintain a higher level of order and achieve
more complex functions.

• Order: Complex systems can spontaneously maintain high-level
order, which means that a large number of uncoordinated in-
teractions between systems can demonstrate a spontaneous and
rational order in general [44].

• Robustness: Complex systems often have strong robustness,
which is reflected in their distributed functions [45]. Most com-
plex systems have a central control system. The central control
system often has good robust performance, and when a general
non-central system fails, the impact on the entire system will not
be too large.

• Hierarchical structure. Complex systems are generally consid-
ered to have many levels of organization that can be used to form
the structure of the system [46], and the order of interactions
between lower-level structures is robust.

2.2. Reinforcement learning

Reinforcement learning (RL) is a typical method in artificial intelli-
gence (AI), which requires the entity (referred to as an agent in RL) to
interact with the environment to receive the rewards, and therefore re-
new its behavior or policy to better maximize the expected return [35].
Recently RL has achieved remarkable performances in different areas
such as games or robotics [47–56]. RL problems can be typically
described by a Markov Decision Process (MDP). The basic components
of the MDP include state set  representing environmental information
that is vital for decision-making, action set  representing actions that
the agent can take, environmental dynamics 𝑝(𝑠′|𝑠, 𝑎) representing the
probability of transitioning from state 𝑠 to next state 𝑠′, discount factor
𝛾 ∈ [0, 1), and scalar reward signal 𝑟 for an agent. Based on the current
state 𝑠, the agent selects an action 𝑎 from all the potential behavior
sets of  to act in the environment. After the environment accepts the
action, it changes and generates a reward signal 𝑟 to feedback to the
agent. The agent then continuously selects the next action according to
the signal and the current state of the environment [35].

Deep learning is a concept that has produced extraordinary results
in a variety of fields [29,32,57–63]. It relies on the neural network
to approximately fit a nonlinear function. Deep reinforcement learning
(DRL), when paired with the aforementioned technologies, is a potent,
widely applicable technology [28,37,64–68].

DRL can often be divided into two distinct categories. The first way
is value-based, which requires a value evaluation for each action-state
pair. The second approach is the policy-based method, the primary
premise of which is to determine the optimal policy or behavior given
the existing condition.
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2.2.1. Value-based method for the DRL
To better demonstrate the idea of value-based DRL, we first intro-

duce the basic idea of Q-learning, which lays the foundations for the
recent DRL algorithms.

The Q-learning algorithm is an RL algorithm based on the value
function [69]. The Q-learning algorithm attempts to build and maintain
a Q-table to measure the expected long-term rewards of each pair of
state and action. In this algorithm, we need to update the Q-values in
the Q-table according to Eq. (1) below. Where 𝛼 is the learning rate and
𝛾 is the decay factor, 𝛾 ∈ [0, 1). Controlling the size of the two factors
can adjust the learning mode of the agent. When 𝛾 is set to be larger,
the agent will review the previous learning situation more. And when
𝛾 is set smaller, the influence of the current state is more obvious.

𝑄
(

𝑠𝑡, 𝑎𝑡
)

← 𝑄
(

𝑠𝑡, 𝑎𝑡
)

+ 𝛼
[

𝑟𝑡+1 + 𝛾 max
𝑎∈

𝑄
(

𝑠𝑡+1, 𝑎
)

−𝑄
(

𝑠𝑡, 𝑎𝑡
)

]

. (1)

DQN: When the situation becomes complex, which means there are
bounds of possible states or even the state space becomes continuous,
maintaining a complete, accurate Q-table is almost impossible. With
the development of deep learning algorithms, researchers have noticed
that representing the Q function with the neural network can effectively
solve more complex environments and tasks (not just tabular MDP).
That is, we use the powerful fitting ability of the neural network to
enhance the representation capability of the agent and incur a better
function approximation. Based on this idea, scholars propose the Deep
Q-Network (DQN) algorithm [47,70].

Eq. (2) is called the Bellman optimal equation:

𝑞∗(𝑠, 𝑎) = 𝑎
𝑠 + 𝛾

∑

𝑠′∈
𝑎
𝑠𝑠′ max

𝑎′
𝑞∗

(

𝑠′, 𝑎′
)

. (2)

Here we use this equation to bridge our predicted value with the
target value, and the optimization function can be withdrawn as the
difference between them. During the update process of the Q-value, if
the same network is used to predict the Q-value of the current state
and the next state, the network output may become unstable. Previous
studies have shown that this phenomenon is more pronounced when
nonlinear activation functions are used [71,72]. Considering this, DQN
proposes a dual network structure, that is to decouple the calculation
of the predicted Q-value and the target Q-value: one of the networks is
used to output the predicted Q-value, and the other network (which is
a lagging network that synchronizes parameters from the current net-
work every fixed gradient steps) is based on the reward to get the target
Q-value. Moreover, in order to solve the problem of the correlation
of the input data and the uncertainty of the output distribution, the
DQN algorithm implements the experience replay [73]. The main idea
is that the data obtained by the interaction between the agent and the
environment in each state is recorded as a sample and stored in the
data pool. When training a neural network, a small part of the data
is randomly selected from the data pool and sent to the network as a
mini-batch for learning.

Accordingly, the loss function of the network is changed to Eq. (3)
below. Where 𝜃 is the parameter of the current network that predicts
the Q-value and 𝜃− is the parameter of the lagging network that outputs
the target Q-value.

(𝜃) =
(

𝑟𝑡+1 + 𝛾 max
𝑎′

𝑄𝜃−
(

𝑠𝑡+1, 𝑎
′) −𝑄𝜃

(

𝑠𝑡, 𝑎𝑡
)

)2
. (3)

The whole training procedure is shown in Fig. 3.
Double DQN: Along with the DQN algorithm’s successful combi-

nation of RL algorithms and deep neural networks, researchers have
also discovered corresponding problems. When DQN updates the Q-
value using the Bellman optimal equation, the action corresponding
to the maximum Q-value in the next state is selected each time, and
the selection and evaluation of values upon actions are based on the
parameters of the target value network. It will lead to the problem of

Fig. 3. Graph illustration of the training procedure of DQN.

overestimating the Q-value. To tackle this problem, reviewing the idea
of DQN in dealing with unstable network output and based on the idea
of double Q-learning [74], the researchers propose the double network
structure for the decoupling of Q-value estimation and action selection,
and they propose the Double DQN model [75]. At this time, the loss
function of the network is updated to Eq. (4) below.

(𝜃) =
(

𝑟𝑡+1 + 𝛾𝑄𝜃−

(

𝑠𝑡+1, argmax
𝑎′

𝑄𝜃
(

𝑠𝑡+1, 𝑎
′)
)

−𝑄𝜃
(

𝑠𝑡, 𝑎𝑡
)

)2
.

(4)

2.2.2. Policy-based method for the DRL
Compared to RL algorithms based on the value function, policy

gradient algorithms, in which the neural network directly outputs the
corresponding action, are more prevalent in the contemporary industry.
In discrete action spaces, RL approaches based on value functions have
been widely applied, however, in continuous action spaces, we cannot
derive state–action value functions for each state. In this situation,
policy-based solutions are more advantageous.

VPG: The core idea of the Vanilla Policy Gradient (VPG) algorithm
is to parameterize the behavior policy, calculate the policy gradient
about the action, and continuously adjust the action along the gradient
direction. VPG ensures that the updated policy could be better than
the old policy, thus continuing to converge to the optimal policy.
Categories in the policy gradient can be divided into stochastic policy
𝑎 ∼ 𝜋𝜃 (𝑎|𝑠) = 𝑃 (𝑎|𝑠; 𝜃) and deterministic policy 𝑎 = 𝜇𝜃 (𝑠). The
former returns the probability of the action under a certain state,
while the latter corresponds to the deterministic action. The core
concept of policy gradient is to increase the probability of actions
that lead to higher rewards while decreasing the probability of actions
that lead to lower rewards until an optimal policy is reached. Sutton
et al. [76] summarized previous work on policy gradient in 2000, which
laid the foundation for modern policy gradient methods; Schulman
et al. [77] propose the concept of generalized advantage function
estimation and gave a relatively well-established problem description
for policy gradients. Mathematically formulating the problem is shown
below.

For a given policy network, our goal is to maximize the expected
return by adjusting the parameter 𝜃:

𝐽
(

𝜋𝜃
)

= E[𝑟(𝜏)], (5)

where 𝜏 is the trajectory, i.e., 𝜏 = ⟨𝑠0, 𝑎0, 𝑠1, 𝑎1,… , 𝑠𝑁 , 𝑎𝑁 ⟩.
For the expected return, by introducing the relevant characteristics

of the log derivation calculation, the results we obtain after derivation
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Fig. 4. The structure of Actor-Critic methods.

are as follows:
∇𝜃𝐽

(

𝜋𝜃
)

= ∇𝜃E𝜏∼𝜋𝜃 [𝑟(𝜏)]

= ∇𝜃 ∫𝜏
𝑃 (𝜏 ∣ 𝜃)𝑟(𝜏)

= ∫𝜏
∇𝜃𝑃 (𝜏 ∣ 𝜃)𝑟(𝜏)

= ∫𝜏
𝑃 (𝜏 ∣ 𝜃)∇𝜃 log𝑃 (𝜏 ∣ 𝜃)𝑟(𝜏)

= E𝜏∼𝜋𝜃

[

∇𝜃 log𝑃 (𝜏 ∣ 𝜃)𝑟(𝜏)
]

.

(6)

By using the sampled trajectory to represent the expectation, we can
get the final optimization function:

𝑔̂ = 1
||

∑

𝜏∈

𝑇
∑

𝑡=0
∇𝜃 log𝜋𝜃

(

𝑎𝑡 ∣ 𝑠𝑡
)

𝑟(𝜏), (7)

where  In contrast to supervised learning, the loss function is defined
and its value is supposed to be minimized, and the policy gradient
scenario seeks to maximize the expected reward function. Through
detailed inspection of the formula, it is possible to conclude that 𝑅(𝑡𝑎𝑢)
represents the current state–action pair’s weight. When the reward
is low, it is reflected in the expected reward function, making the
action less likely to be chosen; otherwise, the action is more likely to
be chosen. The future series of gradient-based policy techniques may
incorporate more enhancements to this formula. Then, an additional
difficulty is posed, which is to assume that all rewards under the
current job are bigger than zero so that the chance of occurrence of
the inferior trajectory will always rise. The strategy for overcoming this
problem is to substitute the reward value with an advantage function.
The advantage function is defined as the current action value function
minus the current state value function, therefore it can indicate the
degree to which the present behavior is superior to the average. How
to define the current state value function remains to be determined.
To estimate the state value, an extra network is provided as a solution.
This is also the basic concept of the Actor-Critic method, which employs
two networks to return the output action and the current state value,
respectively. The entire procedure is depicted in Fig. 4.

DDPG: Deep Deterministic Policy Gradient (DDPG) [49] can gen-
erate a deterministic policy. It combines the ideas of DQN and VPG,
and a total of 4 networks are used for model learning. The calculation
formula of DPG’s deterministic policy gradient based on Q-value is as
follows:

∇𝜃𝐽
(

𝜋𝜃
)

= 𝐸𝑠∼𝜌𝜋
[

∇𝜃𝜋𝜃(𝑠)∇𝑎𝑄𝜋 (𝑠, 𝑎)||𝑎=𝜋𝜃 (𝑠)
]

(8)

The transition from DPG to DDPG can be analogous to the tran-
sition from DQN to DDQN, that is, a dual network is added, which
has both the current network and the target network. Since DDPG
adopts the Actor-Critic structure, we will finally get four networks
remarked as actor current network, actor target network, critic current
network, and the critic target network. The actor’s current network is
used to iteratively update the policy network parameters 𝜃, select the

current action 𝑎 according to the current state 𝑠, and interact with
the environment to generate 𝑠′ and 𝑟; The Actor target network is
responsible for selecting the optimal next action 𝑎′ according to the
next state 𝑠′ sampled in the replay pool based on experience, and
the network parameter 𝜃− is periodically copied from 𝜃. The critic
current network is used for the iterative update of the value network
parameter 𝑤, and is responsible for calculating the current Q-value;
The critical target network is responsible for computing the target Q-
value, while the network parameter 𝑤− is periodically copied from
𝑤. On the basis of the DDPG algorithm, Popov et al. [78] further
expand the algorithm from two aspects and propose an asynchronous
DPG method. Specifically, the authors increased the number of iterative
updates learned after the agent interacts with the environment, in a
way that reduces the number of interactions with the environment
required to learn a successful policy.

TRPO&PPO: The previously introduced VPG algorithm has a sig-
nificant flaw, namely, if the network parameters are updated, the goal
function will also change, as the objective function is an expression
connected to 𝑡ℎ𝑒𝑡𝑎, necessitating the collection of new samples. In
addition, the VPG method has a fatal fault in that the step size of
each update is fixed, making it easy for a policy to degrade after being
updated. In order to solve this problem, Schulman et al. [79] proposed
the Trust Region Policy Optimization (TRPO) algorithm, which uses
confidence intervals for correlation constraints and theoretically proved
that the new policy must be better than the old one. The author
proposed,

𝜂(𝜋̃) = 𝜂(𝜋) + E𝑠0 ,𝑎0 ,…∼𝜋̃

[ ∞
∑

𝑡=0
𝛾 𝑡𝐴𝜋

(

𝑠𝑡, 𝑎𝑡
)

]

(9)

Thus, the new policy might always be improved so long as the
second term is guaranteed to be bigger than zero. The previous policy
state distribution can be utilized to estimate the new policy state
distribution via importance sampling. In addition, KL divergence is
utilized to limit the difference between the old and new policies so that
it does not become excessively huge. The new formula for optimization
is:

max
𝜃

E𝑠∼𝜌𝜃𝑜𝑙𝑑 ,𝑎∼𝜋𝑜𝑜𝑙𝑑

[

𝜋̃𝜃
(

𝑎 ∣ 𝑠𝑛
)

𝜋𝜃𝑜𝑙𝑑
(

𝑎 ∣ 𝑠𝑛
)𝐴𝜃𝑜𝑙𝑑

(

𝑠𝑛, 𝑎
)

]

,

s.t. 𝐷max
𝐾𝐿

(

𝜃𝑜𝑙𝑑 ∥ 𝜃
)

≤ 𝛿.

(10)

The Proximal Policy Optimization (PPO) algorithm is obtained by
refining the TRPO method further [80]. The essential idea of PPO is to
use the clip function to restrict the coefficients between update policies
so that, under varying conditions, the estimation of the coefficients in
front of the advantage function is restricted to a set range to prevent
over-optimization.

𝑖𝑓 𝐴̂𝑡 > 0,

𝐿𝑐𝑙𝑖𝑝(𝜃) =

{

(1 + 𝜖)𝐴̂𝑡 𝑟𝑡(𝜃) > 1 + 𝜖,
𝑟𝑡(𝜃)𝐴̂𝑡 else.

𝑖𝑓 𝐴̂𝑡 < 0,

𝐿𝑐𝑙𝑖𝑝(𝜃) =

{

(1 − 𝜖)𝐴̂𝑡 𝑟𝑡(𝜃) < 1 − 𝜖,
𝑟𝑡(𝜃)𝐴̂𝑡 else.

(11)

A3C: A3C (Asynchronous advantage actor-critic) is a novel algo-
rithm developed by Google DeepMind to tackle the Actor-Critic non-
convergence problem [81]. An essential difficulty in RL is how to
decorrelate the reliance between data. A3C’s proposed approach is to
employ an asynchronous technique. In general, A3C generates many
parallel environments and permits various agents with secondary struc-
tures to change parameters in the primary structure simultaneously
in these parallel settings. Notably, parallel agents do not interfere
with one another during training, and the discontinuity in the update
supplied by the secondary structure will disrupt the parameter update
of the primary structure, thereby reducing the correlation of the update
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and improving convergence. The essence of the A3C method during
the training process is to place the Actor-Critic in numerous threads
for synchronous training, while a central processing unit summarizes
the training results and provides the modified gameplay back to these
multiple threads. These workers may collect data with minimal sample
correlation and learn, which is also the basic concept underlying A3C’s
series of algorithms.

SAC: The Soft Actor-Critic (SAC) algorithm [82] aims to learn
a policy that not only maximizes the cumulative reward but also
the entropy of the policy. The incorporation of entropy maximization
promotes exploration by the agent, enhancing the policy’s robustness
and effectiveness in diverse scenarios. The objective function of SAC,
reflecting this balance, is given by:

𝐽 (𝜋) = E(𝑠𝑡 ,𝑎𝑡)∼𝜌𝜋

[

∑

𝑡

(

𝑟(𝑠𝑡, 𝑎𝑡) + 𝛼(𝜋(⋅|𝑠𝑡))
)

]

(12)

Here, 𝐽 (𝜋) denotes the objective function in terms of policy 𝜋,
𝑟(𝑠𝑡, 𝑎𝑡) is the reward function, (𝜋(⋅|𝑠𝑡)) represents the entropy of the
policy at state 𝑠𝑡, and 𝛼 is a temperature parameter that balances the
importance of the entropy term relative to the reward. The policy 𝜋
is derived to optimize this objective, and 𝜌𝜋 indicates the state–action
distribution under policy 𝜋.

The SAC algorithm utilizes two Q-functions to stabilize the training
process and minimize the overestimation bias, a common issue in
value-based methods. It employs a reparameterization trick for efficient
policy gradient updates, contributing to its stability and convergence
properties. Overall, SAC has been demonstrated to perform excep-
tionally well in various continuous control tasks, outperforming many
classical RL algorithms. Its unique combination of off-policy learning
and entropy-based exploration strategy makes it highly suitable for
tasks with complex, high-dimensional action spaces.

MPO: The Maximum a Posteriori Policy Optimization (MPO) [83]
algorithm is a sophisticated RL approach, predominantly employed for
solving complex control problems in continuous action spaces. It is
a policy-based method that focuses on enhancing policy stability and
reliability while maintaining performance efficiency. MPO combines
classic policy gradient techniques with contemporary policy optimiza-
tion strategies, employing Maximum a Posteriori (MAP) estimation to
refine the policy.

The core idea of MPO lies in its dual optimization process dur-
ing policy iteration. Initially, the algorithm estimates the posterior
probability distribution of actions using a collected set of data, aid-
ing in a better understanding of the current policy’s behavior across
various states. Subsequently, it applies MAP estimation for policy up-
dating, aiming to achieve higher expected rewards. One of the primary
advantages of the MPO algorithm is its effective balance between
exploration and exploitation, ensuring stability in policy updates. This
characteristic renders it exceptionally suitable for problems involv-
ing high-dimensional state and action spaces, particularly in complex
robotic control and simulation environments. Through meticulous pol-
icy updates and efficient utilization of posterior probabilities, MPO
achieves robust performance improvements while maintaining high
sample efficiency.

2.2.3. Advanced topics in DRL
In this subsection, we introduce some advanced topics in DRL that

have some potential applications in NPPs.
Offline RL. Different from online RL, offline RL aims at learning

optimal policies from some static offline datasets, which were previ-
ously gathered by some unknown behavior policy. Offline RL eliminates
the need of getting access to the environment to train RL algorithms,
which is extremely appealing to NPPs due to safety considerations. A
central challenge in offline RL is extrapolation error [84], where the
value estimate can be inaccurate upon unseen state–action pairs. To

address this, existing methods can be categorized into value pessimism
methods [84–86], policy constraint methods [87–89], etc.

Model-based RL. Model-based RL [90] optimizes its policy with
the aid of the learned dynamics model, which models the physical
characteristics in the system. Its application in NPPs is also appealing
since we can learn the key physical dynamics via neural networks,
and use the dynamics models to generate synthetic transitions. Then
those imagined transitions (i.e., imagined fake samples) can be used for
training policies, enabling the policy to learn faster and better. The core
benefit of using model-based RL is its superior sample efficiency. There
are many interesting researches in model-based RL, including utilizing
it in the offline setting [91–94], how to learn a better model [95,96],
etc.

3. Reinforcement learning on complex systems

There are many basic applications of RL on complex systems. In the
power supply held on a complex system, for example, Zhou et al. [97]
propose an AI agent that was based on DRL for handling various
operating scenarios for the economic dispatch of a combined heat and
power system. In energy management, Samadi et al. [98] propose the
use of decentralized multiagent systems (MASs) for integrated grid-
connected microgrids. MASs with DRL has shown not only flexible
management while considering customer consumption but also reduced
operating costs. Kazmi et al. [99] optimize the energy efficiency of hot
water production by using a DRL controller, which could reduce the
energy consumption by almost 20% for a set of 32 Dutch houses. This
method also significantly reduces the energy cost of an HVAC (heating,
ventilation, and air conditioning) system by using DRL instead of rule-
based and model-based strategies [100]. In another study, DRL is
adopted in urban rail transit to effectively improve energy management
compared to the genetic algorithms. In the following part, we would
like to introduce some general applications on several typical complex
systems of RL. Although most experiments are conducted on simulation
platforms, the application of RL to complex systems can still provide
valuable insights for implementing RL in nuclear power plants.

To facilitate the readers to better capture the complex systems and
algorithms used in these systems, we present in Table 1 a summary of
papers on the typical complex systems, the operating areas, the utilized
RL algorithms, and the published years.

3.1. Wind power system

As one of the applications of RL algorithms in the field of the wind
power complex system, in the research conducted by Oh et al. [101], RL
algorithm is implemented in ESS (Energy Storage Systems) operation
to manage the WPG (Wind Power Generation) forecast uncertainty,
which is a critical challenge for wind power generation. To handle these
questions, the ESS operation problem is presented as the MDP model
with the ES (Energy subsystem) and PS (Power subsystem) constraints.
The SARSA-based algorithms [35] and Q-learning-based algorithms
are implemented to find the optimal policy of the MAE (Mean Ab-
solute Error) minimization problem based on MDP. In this task, the
SARSA-based method gives a more robust performance compared to the
method based on Q-learning. Results of simulations conducted based
on practical WPG generation data and forecasting indicate that the
proposed RL-based ESS operation strategy can manage the WPG fore-
cast uncertainty more effectively than conventional Q-learning-based
methods.

Wei et al. [102] establish a RL-based intelligent maximum power
point tracking (MPPT) algorithm for variable-speed wind energy con-
version systems (WECSs). By updating the action values recorded in
a Q-table, a model-free Q-learning algorithm is intended to determine
the optimal policy for the controller of the WECS. After a period of
online learning, the maximum power points (MPPs) are determined in
order to produce an optimal speed-power curve for rapid MPPT control



Nuclear Engineering and Technology 56 (2024) 1959–1974

1965

A. Gong et al.

Table 1
An outline of reinforcement learning on a complex system.

Complex systems Operating areas RL algorithm Year

Wind power system
Oh et al. [101] ESS(Energy Storage Systems) SARSA-based,Q-learning-based 2020
Wei et al. [102] WECSs(Wind Energy Conversion Systems) Q-learning-based 2015
Zhang et al. [103] Wind power prediction DDPG 2021

Electric power systems
Xu et al. [104] Reactive power control Distributed Q-learning 2012
John et al. [105] Reactive Power Control Q-learning 2004
Yu et al. [106], AGC(Automatic Generation Control) Q-learning 2011
Daneshfar et al. [107], AGC(Automatic Generation Control) Q-learning 2010
Ahamed et al. [108], AGC(Automatic Generation Control) Q-learning 2002
Yu et al. [109], AGC(Automatic Generation Control) Q-learning 2012
Ye et al. [110] Market decision DDPG 2019
Zarrabian et al. [111] Generators power control Q-learning 2016
Liu et al. [112] Cyber-physical security assessment Q-learning 2019

Coal-fired power plant
Cheng et al. [113] Coal-fired boilers combustion optimization system DQN 2018
Fu et al. [114] Denitrification system A3C 2020
Zhan et al. [115] Combustion control MORE 2021
Stephan et al. [116] Industrial hard-coal combustion process control Multiagent system 2001

Robotics
Andrychowicz et al. [117] Migration from simulation to real objects Distributed RL 2020
Akkaya et al. [118] Manipulation PPO 2019
Sangiovanni et al. [119] Obstacle avoidance task of the robotic arm NAF 2018

of the WECS. Simulation results on a 1.5-MW DFIG wind turbine and
experimental tests on an emulated 200 W PMSG (Permanent-Magnet
Synchronous Generator) wind turbine confirmed the proposed RL-based
MPPT algorithm.

Zhang et al. [103] propose a two-step wind power prediction
method, which consists of two phases: long-time-scale coarse prediction
and short-time-scale fine correction. In the short-time-scale fine cor-
rection, a deep deterministic policy gradient algorithm is implemented
to learn the information from real-time weather. The results of the
experiments they conducted on the real-life case confirm that their
method can properly predict wind power generation and have a better
prediction accuracy than existing techniques.

3.2. Electric power systems

Electric power systems face a multitude of control problems over
different operating states and time scales where RL could be helpful
to handle the problem [103,120–124]. [104,105] solve the classical
voltage control problem with the Q-learning algorithm. According to
previous research [106–109], automatic generation control of electric
power system is achieved by several RL algorithms based on Q-learning.
Ye et al. [110] use DDPG algorithms to solve the problem of the market
decision of the electric power system.

Zarrabian et al. [111] propose a method based on RL for preventing
cascading failure (CF) and blackout in smart grids by acting on the
output power of the generators in real-time. The Q-learning algorithm is
used in this research to train the system for the optimal action selection
strategy. After a period time of training, the system is able to relieve
congestion of transmission lines in real-time by adjusting the output
power of the generators (actions) to prevent consecutive line outages
and blackouts after N-1 and N-1-1 contingency conditions. According
to the results of experimental implementation and simulation, their
method is accurate and robust in preventing cascading failure and
blackout. Moreover, [112] proposes an online Q-learning method to
ensure grid security.

All the above, RL implementations in electric power system control
and decision problems are mostly based on offline RL [84,86,87,89,
91,93,125–130], which is understandable. In electric power systems,
the most important issue for designers to be concerned about is safety
and reliability. Exploration that is commonly adopted in online RL will
be dangerous then. The way to generate a good control policy while
ensuring stability is to use offline RL learning with the data previously
collected from a system model.

3.3. Coal-fired power plant

DRL has a wide range of applications in traditional systems that
use coal to supply energy. In the latest research, Cheng et al. [113]
propose a framework called ThermalNet, which uses Long short-term
memory (LSTM) components and a DQN network for prediction and
optimization, respectively. The system can extract boiler behavior char-
acteristics and formulate a series of control measures, which can reduce
emissions and simultaneously enhance fuel utilization according to
their experiments.

In a coal-fired power plant system, one of the important tasks is
to predict the efficiency of the denitrification and then generate a
control strategy to control the efficiency of denitrification based on it to
make the power plant’s system more efficient. To handle this problem,
Fu et al. [114] propose a DRL-based model which combines a LSTM
model and A3C algorithm. LSTM is built to give the prediction of the
efficiency of the denitrification based on the knowledge learned from
the history information. Then the DRL algorithm A3C generates the
control strategy for SCR (selective catalytic reduction) denitrification
efficiency in coal-fired power plants based on the prediction given
by the LSTM. This two-step method is proven to be more accurate
and efficient than other machine learning models, as their experiments
clearly show. LSTM is efficient in utilizing history information of the
power system to make predictions of the future states which can also be
introduced to NPPs and leverage temporal knowledge for better system
control.

Zhan et al. [115] use a data-driven AI system called DeepThermal
to optimize the combustion efficiency of thermal power generating
units (TPGUs). The core of this system is a model-based offline RL
framework that can solve the MDP problem with pure offline training
without real-time interaction with the environment. DeepThermal has
been successfully deployed in four large coal-fired thermal power plants
in China. Stephan et al. [116] propose an RL system that consists of
four agents realized by relatively simple neural function approximators.
They demonstrate that the use of this system can significantly reduce
air consumption in the production of energy fields.

3.4. Robotics

In general, using a robot to perform certain operations is a relatively
complex task, including control and path planning. RL has also been
widely and successfully applied in it. Andrychowicz et al. [117] use
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Fig. 5. Roadmap for applying reinforcement learning methods into NPPs.

three technical means, such as extensive randomizations, memory-
augmented control policies, and training at large scale with distributed
RL, to realize the migration of robots from simulation to real objects.
PPO is the most widely used algorithm. By carefully choosing the
sensing mode and extensively randomizing the simulation environment,
the algorithm can prevent the policy from overfitting a particular
simulation scenario, making it more likely to transfer to the real
world, and enhancing generalization performance [118]. Aiming at
the problem that domain randomization in previous research requires
a lot of manual parameter adjustment, a method of automatic do-
main randomization is proposed, which can automatically complete
the parameter adjustment process, thereby further simplifying the real
modeling task. In the final experimental environment, the robot can
operate the Rubik’s cube well.

Sangiovanni [119] faces the obstacle avoidance task of the robotic
arm. The reward function is manually designed as the distance between
the end effector and the target point, the amplitude of the action, the
distance between the obstacle and the robot, and the NAF (normalized
advantage function) algorithm is used for training. Among them, the
NAF algorithm can be regarded as a continuous version of the Q-
learning algorithm. The experiments are carried out in four scenarios,
and all have achieved good performance.

4. Reinforcement learning in NPPs

We believe the realization of autonomous and intelligent control of
NPPs is the ultimate goal, while there is still a long way to go. We
present in Fig. 5 the roadmap of utilizing RL algorithms in NPPs. There
are generally three phases:

1. Apply some simple RL algorithms to aid the operators in han-
dling simple tasks in NPPs, e.g., the power increase opera-
tion. Such types of tasks are simple and generally can be well-
addressed by simple plain control algorithms like PID. Many
existing works that attempt to apply RL algorithms in NPPs can
be categorized into this type (which is also the key component
of the following parts).

2. Apply some advanced and robust RL algorithms to aid the oper-
ators in handling some complex tasks in NPPs, e.g., a mixture of
emergent conditions occur in NPPs. To the best of our knowl-
edge, this cannot be achieved at the current stage and none
of the research succeeds in addressing it. It is hard since the
agent needs to quickly identify which types of accidents are
happening, and suggest the human operators the correct actions.
How to ensure the safety and robustness of the agent are the key
challenges.

3. No human operators are needed in the NPPs, and all of the tasks
can be done by a single agent. At that time, the whole plant can
be all controlled by artificial intelligence, and simultaneously

the safety of the NPPs can be guaranteed. This is very chal-
lenging, and it needs further advances in the field of artificial
intelligence.

At the current stage, we can only realize phase 1 in the roadmap,
and we are expecting further advances in this field. Our main contri-
bution in this section is that we provide a block-by-block investigation
of the recent advances in applying RL algorithms in NPPs (i.e., papers
concerning on phase 1 of the roadmap). We summarize the typical
scenarios and algorithms used in Table 2 and hope that our review can
aid the researchers of interest and promote the development of nuclear
power plant technologies.

4.1. Auto-control and design optimization

4.1.1. Energy system
The energy system can be used to provide the energy supply process

of the related equipment in the NPPs, and the setting value of the
local controllers needs to be adjusted to perform the corresponding
operations. The system is critical for goals such as optimizing heat
transfer efficiency, reducing steady-state errors, and more. The use
of reinforcement learning control (RLC) can approximate the optimal
control capability corresponding to the user-defined utility function,
and can effectively avoid the coupling effect and nonlinear relationship
between controllers. [131] propose a multi-layer perceptron (MLP)-
based state observer and an approximate optimal controller to form
a control system. The linear representation of the MLP-based state
observer in [131] is given first, and the approximate optimal controller
is obtained by solving the Riccati equation corresponding to the linear
representation. It can be proven that the closed loop is UUB (Uniformly
Ultimately Bounded) stable by the Lyapunov direct method. In specific
applications, the MLP-based RLC is applied to the thermal power re-
sponse optimization of a nuclear steam supply system (NSSS) based on
a high-temperature gas-cooled reactor. The simulation results not only
show the feasibility and the satisfactory performance of the method
but also show the effect of controller parameters on the closed-loop
response.

In tackling the control problems associated with boiling water re-
actors (BWR), characterized by high non-linearity, [133] employs the
DDPG algorithm and compares it with the 𝐻∞ control method. The
study points out that traditional PID control methods struggle to be
effective due to the complexities inherent in BWR control. By utilizing
RL-based techniques, these challenges can be well-met. Experiments
conducted on a simulator show that the RL control system outper-
forms the 𝐻∞ control system in areas such as disturbance rejection,
perturbation stability, and set-point tracking. The results underscore
the suitability of applying RL methods to complex control scenarios like
those found in BWR systems.

[132] propose a physics-informed RL optimization method of nu-
clear assembly design, which could efficiently reduce the cost of energy.
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Table 2
An outline of reinforcement learning on NPPs.

NPPs Operating areas RL algorithm Year

Design optimization(Energy system)
Dong et al. [131] Nuclear steam supply system MLP-based RLC 2020
Forgeta et al. [132] Boiling water reactor Deep Q-learning, PPO 2021
Chen et al. [133] Boiling water reactor DDPG 2022
Seurin et al. [134] Nuclear fuel loading pattern optimization PPO 2023
Zhang et al. [135] Nuclear steam supply system SAC 2023

Auto-control and monitoring
Park et al. [136] Nuclear facilities monitoring DRL-based SFSC 2020
Lee et al. [137] Autonomous operation SAC 2021

Coordinated control
Li et al. [138] Coordinated control system DDPG 2021
Kim et al. [139] Coordinated control on startup & shutdown part SAC 2023
Bae et al. [140] Multi-objective coordinated control SAC, HER 2023

Operational phase (Power start-up)
Kim et al. [141] Power start-up Q-learning 2019
Lee et al. [142] Power start-up A3C 2020
Park et al. [143] Heat up control SAC 2022

Operational phase (Emergency operation)
Lee et al. [137] Emergency controller SAC 2021

Application on tokamak: Nuclear fusion
Degrave et al. [144] Nuclear fusion controller MPO 2022

In this study, a connection through reward shaping between RL and the
tactics that fuel designers follow in practice has been established, mov-
ing fuel rods in the assembly to meet specific constraints and objectives.
Their methodology utilizes two classical RL algorithms, DQN, and PPO.
They compare the performance of their RL method to SO (stochastic
optimization) algorithms such as genetic algorithms and simulated
annealing. Applying these methodologies to two boiling water reactor
assemblies of low-dimensional (around 2 × 106 combinations) and
high-dimensional (around 1031 combinations) natures, they conclude
that RL is more effective than SO in solving the high-dimensional
problems, through embedding expert knowledge in the form of game
rules and effectively exploring the search space. The results of their
work demonstrate the effectiveness of RL as another decision-support
tool for nuclear fuel assembly optimization.

[134] employs the PPO algorithm for nuclear fuel loading pattern
optimization, distinguishing itself from similar studies by deeply exper-
imenting with the effect of different parameters in RL on optimization
performance. The study tests two vital parameters, the number of
samples seen before updating the model, denoted as 𝑛steps, and the
parameter controlling the exploration-exploitation trade-off, known as
the entropy coefficient, denoted as entropy coefficient. The research
identifies the optimal control strategy and parameter range. Specifi-
cally, employing a set of specific initial values and reducing 𝑛steps and
the entropy coefficient until no further learning was observed proved
effective. This rigorous examination provides valuable insights and
a methodical approach to tuning hyperparameters in the context of
nuclear fuel optimization.

NSSS is a crucial component of nuclear power plants, responsible
for producing steam used for electricity generation or combined heat
and power production. However, the complex coupling between the
reactor and steam generator, which cannot be precisely modeled, has
limited the performance of existing transient control strategies. [135]
introduces a DRL multi-objective optimization method that enhances
the responsiveness of both the thermal power and outlet steam temper-
ature within the NSSS by dynamically adjusting the reference values
of the existing PID controllers. By merging the strengths of both PID
control and DRL methods, this approach exhibits significant improve-
ment in transient response compared to traditional PID controllers. The
research presents an innovative solution, offering insights into more
effective and responsive control within the complex environment of
nuclear power systems.

Fig. 6. The structure of DRL-based autonomous agent conducted by Lee et al..

4.1.2. Auto-control and monitoring
Lee et al. [137] suggest a DRL-based autonomous agent. The agent

can manage the power increase operation from 2% to 100% and
reduce the pressure and temperature until the shutdown cooling entry
condition after the reactor trip caused by loss of coolant accident in
NPPs. The DRL-based controller suggested in this study combines a
rule-based system and DRL algorithm that involves a Soft Actor-Critic
(SAC) [82] algorithm and deep neural network. The test results using a
compact nuclear simulator indicate that the agent can manipulate com-
ponents to comply with identified constraints for start-up operation and
emergency operation. This study develops a DRL-based agent for power
increase and emergency operations. Fig. 6 illustrates the structure of
the proposed controller, which consists of (1) a strategy selector, (2) a
power increase controller, and (3) an emergency controller.

[136] proposes a data-driven approach using DRL technologies to
learn effective strategies to monitor the conditions of nuclear facil-
ities and help the operator diagnose their situations. They design a
learning framework and key elements of RL to learn effective strate-
gies and monitor the conditions of nuclear facilities. Based on this,
a deep neural network structure and a DRL algorithm are presented
for diagnosis learning. Using the scenario data produced from RE-
LAP/MOD3.3 [145], the proposed algorithm has the potential to help in
diagnostic tasks. Their experimental results demonstrate the feasibility
of DRL in diagnosing the safety functions of a nuclear facility.

4.1.3. Coordinated control
[138] proposes a mathematical model of the coordinated control

system, and then transforms it into RL model and applies an exist-
ing widely used DRL control algorithm, DDPG to solve the problem.
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Through simulation experiments, the proposed algorithm has shown
an extremely remarkable control performance. To be specific, the au-
thors came up with a mathematical model to minimize the system
deviation, based on the control problem of the reactor-coordinated
control system. Considering the uncertainty of the system and the re-
quirements of dynamic real-time optimization, the mathematical model
is further transformed into RL control model. Then they utilize the
DDPG algorithm to realize interactive learning and problem-solving
of the reactor-coordinated control system. In the experimental part,
they fully compare the control effects of different DRL algorithms
and control schemes formed under random strategies and verify the
superior control effect and performance of the DDPG algorithm.

[139] introduces an innovative cooperative control strategy, specif-
ically designed to manage startup and shutdown procedures within
nuclear power plants. This strategy subdivides the operations into man-
ageable tasks, each of which is allocated to a designated sub-intelligent
agent. These agents employ the SAC algorithm to administer control.
Furthermore, to circumvent the occurrence of mutually conflicting
actions among the diverse agents, the manuscript delineates the design
of a superior decision-making system. This system exploits a LSTM
network, which is used to anticipate potential future parameters of the
nuclear power plant’s operations. By employing a scoring mechanism
that selects the most appropriate action based on the highest score,
this framework facilitates harmonious and coordinated actions amongst
the various intelligent agents. This represents a significant stride in
enhancing operational efficiency and mitigating potential conflicts in
nuclear power plant management.

Addressing coordinated control problems by achieving multiple
objective multi-objective control problems, [140] introduces a novel
scheme employing SAC and Hindsight Experience Replay (HER) al-
gorithms to manage continuous control tasks under a simple binary
reward function. Experiments were set up involving five agents, tasked
with individually controlling the pressure and volume of reactor coolant
during startup. The results yield favorable performance, even reveal-
ing that the DRL method can achieve good outcomes on untrained
objectives, such as the cooling task of the coolant.

4.2. Operational phase

4.2.1. Power start-up
The power start-up of the NPPs is a very critical task and the goal is

to automatically increase the power of the reactor from around 2% to
100% so that the subsequent temperature increases and other complete
start-up processes can be carried out. Generally speaking, a nuclear
power plant should be a system with a high level of intelligence,
because the tasks between the various subsystems must be executed
quickly, and any command needs to be responded swiftly to ensure
overall safety. However, traditional power boosting is operated man-
ually, which is more prone to operational errors due to the following
reasons. The number of target selections and strategies to be adopted is
rapidly increasing. There are a large number of related parameters that
need to be additionally maintained, tested, and detected. Meanwhile,
the operator may not have clear operating instructions [146–149].
Using RL as an auxiliary operating system to replace traditional manual
operations can effectively reduce operational errors on this task, reduce
operating costs, and improve energy utilization.

Lee et al. [142] propose a DRL framework based on the A3C algo-
rithm while incorporating the LSTM network for continuous control,
and discrete control is performed using rule-based design operations.
Both of them are combined as the full process of power activation. Since
the process of power startup involves a series of timing operations, the
LSTM block is introduced. This network is a variant of the RNN net-
work, which can process sequential signals well. As a typical algorithm
in DRL, the A3C algorithm can effectively improve CPU utilization,
reduce the number of interactions with the environment, and speed
up training efficiency. In this task, the reward function is set as the

deviation of the current power and the expected power at the moment,
and the paper sets an upper and lower bound for the power situation at
different moments to maintain the reward that should be obtained. If
at some point the power is outside this limit, the training stops. Finally,
the continuous modules that need to be controlled will be output, such
as rod controller, make-up water valve and boric acid water valve,
and other components that should take action indicators. Experiments
show that the algorithm can even increase the power from 2% to
100% according to the degree of 3%/h. Besides, [141] has come up
with a two-level method using Q-learning to overcome the difficulty of
lacking data on the start-up and shut-down part. The first level aims at
outputting goals and constraints with a supervisory operation module.
The second level accepts the outputs of the first level and attempts to
achieve the desired goal under certain constraints using either an RL
algorithm or rule-based control. The Q-learning algorithm is adopted
to solve tasks that require complex judgment and component control,
and otherwise, simple rule-based logic is utilized for task solving.

[143] addresses the application of DRL to the heat-up issues in
nuclear power plants by proposing the use of the A3C algorithm for
control. Additionally, a neural network framework structure was de-
signed to facilitate the synchronization of information among different
agents. Furthermore, the paper expanded the existing compact nuclear
simulator (CNS) interface to enable compatibility with custom RL
frameworks and algorithms.

4.2.2. Emergency operation
Under certain circumstances, NPPs may produce unexpected acci-

dents. At this time, we can adopt a series of operational measures to
ensure the integrity of the core sector and prevent the risk of major
problems to the greatest extent. The technical means used in traditional
non-automatic NPPs are manual intervention. That is, to predict in time
before the accident, activate the safety system in time, and manually
cool the nuclear reactor. However such a method is not automated
enough and could not function in time. [137] presents a state-of-the-art
SAC based algorithm that can choose suitable actions to meet pressure
and temperature demand profiles, as well as to achieve a specified
cooling rate.

The controller proposed in the paper is generally composed of three
parts: a policy selector, a power increase controller, and an emergency
controller, which respectively apply a rule-based system for discrete
control and an SAC algorithm from RL for continuous control. SAC
has been proven to be efficient at exploring various continuous control
tasks [82] and can avoid those unnecessary branches that could bother
the training procedure. This algorithm generally is applied in contin-
uous control, which demands higher accuracy while prior knowledge
can make fewer contributions. The control target is those parameters of
the PZR (the pressure of pressurizer) spray valve, aux feed-water valve,
and steam dump valve, which have significant relationships with the
two key factors determining the resilience when meeting the constraints
of pressure and temperature. The reward is designed to be the change
in temperature and pressure. In other words, the less of the change in
those two values, the larger of reward the agent could receive.

The authors’ team utilized a CNS as a real-time testbed for train-
ing and validating the proposed algorithm. The emergency condition
adopted in the paper is the Loss of Coolant Accidents (LOCA). Ex-
periments show that after training for a long enough period, the RL
algorithm proposed in this paper can effectively cool the reactor tem-
perature and satisfy various constraints. Experiments indicate that this
algorithm can also reach the shutdown operation entry condition.

4.3. Application on tokamak: Nuclear fusion

Recently, Degrave et al. [144] publish an article in Nature on
nuclear fusion using DRL, which has attracted widespread attention.
This work has laid a solid foundation for large-scale deployment in
NPPs in the future to achieve sustainable energy. As a tokamak, the
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Fig. 7. Around the world, there are several organizations and nations that are dedicated to RL’s participation in the NPPs. Among them are South Korea, China, the United States,
Australia, and the United Kingdom. It is important to note that Korea leads the pack in terms of outcomes, accounting for nearly half of the production. On the other hand, related
research is far less developed in Europe and North America, and it is hoped that these areas could pick up the pace and actively support the growth of this sector.

hydrogen atoms inside a ring-shaped container that can hold a nuclear
fusion reaction will generate a rotating and tumbling plasma, which
makes the tokamak appear in a chaotic state. If the plasma can be
controlled so that it is stable enough, it could be a big step forward
in achieving controlled nuclear fusion. The difficulty of the problem is
not only continuously maintaining the high temperature of the plasma
in the container but also achieving different complex configurations for
different plasmas. This is a time-varying, multi-variable and nonlinear
control task, and the authors utilize RL to carry out it.

The difficulty of tokamak nuclear fusion is to maintain the continu-
ous high temperature of the plasma in the container, which requires
high-frequency and continuous control of the magnetically actuated
coil. There are also different control objectives at different stages.
In this paper, a new controller design architecture is proposed. The
model is divided into three stages. The first stage is to design the
desired goal of the designer for the experiment. Goals may include the
location of the plasma and the stability of its current flow. Considering
the different configurations required by the plasma in different states,
this goal may change over time. The second stage is to use DRL to
interact with the tokamak simulator to find a near-optimal policy that
can achieve the goal. Finally, in the third stage, the control policy is
deployed to the tokamak hardware for operation in real life. Based
on the free boundary plasma evolution model, the plasma state is
modeled under the influence of the coil voltage. To cope with the
mismatch of the corresponding data rate between the simulator and
the RL environment, the researchers use MPO algorithm.

In the experimental session, the author’s team first demonstrated the
precise control of the fundamental quality of the plasma equilibrium.
The results show that the RL architecture enables precise plasma con-
trol in all relevant phases of the discharge experiment. Furthermore,
there is much evidence showing that the proposed architecture is capa-
ble of scientific research to generate complex configurations. Finally,
the authors test the control of ‘‘droplets’’, a configuration in which
two independent plasmas coexist inside the vessel, to demonstrate
the power of the architecture in exploring new plasma configurations.
This work lays an important foundation for the combination of basic
disciplines and RL and the subsequent application of RL in nuclear
fission as well as in NPPs.

5. Discussion

In this section, we provide some detailed discussions and sugges-
tions to aid the development of incorporating RL algorithms with
NPPs.

5.1. What can we learn from the collected papers?

Based on our review, we first plot the word cloud diagram on key
nations, universities, or institutions that apply RL algorithms to NPPs,
and the key RL algorithms existing literature employed in NPPs, which
can be found in Fig. 7. We find that in terms of nations, China and South
Korea publish the most articles on utilizing RL algorithms in NPPs; in
terms of the institutions, Chosun University and Tsinghua University
are the most energetic in exploring the possibilities of RL algorithms
in NPPs; as for the RL algorithms, we can see that DQN and SAC are
the most popular algorithms adopted. The diagram results indicate that
the Asian countries and institutions are the most positive in introducing
recent advances in the RL community into the scenario of NPPs, and
they tend to use the widely investigated algorithms instead of a new
algorithm that has not been tested in domains other than simulated
simple control tasks like locomotion. It is understandable since the
simulations of NPPs are time-consuming, the real-world application
in NPPs is expensive and risky, and there is no guarantee that new
techniques can incur a good result. For the benefit of developing the
next generation advanced NPPs, we list the following suggestions in
the research community of nuclear energy and nuclear power plants:
(1) countries or institutions outside Asia ought to engage more into
this direction and work together to foster the promising opportunity
of combining RL algorithms into NPPs; (2) the community ought to
actively try the possibility of more advanced RL algorithms in different
NPP tasks, e.g., model-based RL [93,94,150–152], offline RL [85–87,
153,154], etc.

5.2. Why should we introduce RL algorithms into NPPs?

We can see that, in a series of tasks in NPPs, process control tasks
occupy the mainstream. Most of the controllers in these tasks are
generated based on models, so we need to maintain and update the
models regularly to ensure their performance. Andersen [155] and
Spielberg [156] have conducted relevant theoretical research on the
application of DRL in process control and verified its effectiveness and
superiority through a large number of simulations. Traditional PID con-
trollers require continuous monitoring and call remedial models when
their performance degrades. Once a failure occurs, the maintenance
process used is usually complex and can cause work interruptions. In
some complex application scenarios of NPPs, when faced with nonlin-
ear and high-dimensional control tasks, it is difficult to model high-
quality models, and it is challenging to ensure the effectiveness of
PID controllers. The DRL controller can skip the process of artificially
modeling the environment by learning in the process of interacting
with the environment, i.e., the NPP systems. Generally speaking, the
RL algorithms have a more specific understanding of the environment
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Table 3
List of abbreviations and their full forms in this paper.

Abbreviations Full forms

NPP Nuclear Power Plants
RL Reinforcement Learning
PID Proportional-integral-differential
PLCs Programmable logic controllers
FPGAs Field-programmable gate arrays
DRL Deep reinforcement learning
AI Artificial intelligence
MDP Markov decision process
DQN Deep Q-Network
TRPO Trust Region Policy Optimization
DDPG Deep Deterministic Policy Gradient
A3C Asynchronous Advantage Actor-Critic
VPG Vanilla Policy Gradient
PPO Proximal Policy Optimization
MASs Multiagent systems
ESS Energy Storage System
WPG Wind Power Generation
ES Energy subsystem
PS Power subsystem
MAE Mean Absolute Error
MPPT Maximum power point tracking
WECSs Wind energy conversion
MPPS Maximum power points
PMSG Permanent-Magnet Synchronous Generator
AGC Automatic Generation Contro
LSTM Long short-term memory
NSSS Nuclear steam supply system
SO Stochastic optimization
SAC Soft Actor-Critic
HER Hindsight Experience Replay
CNS Compact nuclear simulator
LOCA Loss of coolant accidents

and can achieve some intelligence instead of controlling by following a
previously defined rule. DRL methods have more flexibility compared
to PID controllers.

A recent work [157] also indicates that, compared to employing
traditional PID controllers, the utilization of DRL controllers results
in smaller accumulative error. Moreover, combining the two by using
a DRL-tuned PID controller generates the smallest error and quicker
response times. Furthermore, while PID-based controllers tend to focus
on individual segments, DRL-based controllers can simultaneously con-
trol multiple parts and sets of parameters. Finally, in contrast to PID
controllers, DRL controllers feature lower operation frequency, which
leads to two main advantages: reduction in the probability of unsuc-
cessful operations, and prevention of premature aging in instruments
and equipment.

5.3. The benefits and problems of using RL algorithms in NPPs

By observing the various applications of RL in complex systems, it is
not difficult to find that, relying on the powerful tool of the deep neural
network, RL has gradually replaced traditional control methods and
plays an increasingly important role in many control tasks. Using DRL
algorithms can help us achieve good fitting results in many nonlinear
complex environments without relying on too much expert knowledge.
In addition, we can also achieve end-to-end control with the help
of neural networks, thus avoiding the intermediate data conversion
process.

By investigating the application of existing RL in NPPs, we can
see that some of the work has achieved good performance in various
modules of NPPs. However, it is undeniable that the related work is
comparatively blank and fragmented than other fields like robotics,
game AI, etc. It can be seen that DRL is easily applied to tasks based on
continuous control, and is matched with discrete control based on prior
knowledge to complete control tasks together. In addition, these RL
algorithms are basically model-free, and another mainstream direction

in RL, model-based methods, is rarely studied, which shows that there
are broad spaces on the application of model-based methods on NPPs.

However, there are also some problems in applying DRL methods
in NPPs which we summarize below. We give some current efforts and
directions for addressing these challenges.

• The sampling efficiency of RL algorithms is usually poor.
To address the poor sample efficiency issue in online RL algo-
rithms [47,82,158,159], many types of research on applying RL
in NPPs use distributed training models, which can ensure full
utilization of data and improve training efficiency for subsequent
deployment to large-scale complex scenarios. Considering that
control tasks often need to combine historical data, LSTM net-
works are also widely used. These all can remedy the potential is-
sues of vanilla RL algorithms and contribute to a better-behaving
agent in NPPs.

• There is a gap between simulation and real-life operation.
At present, most of the advances in applying DRL algorithms in
NPPs are evaluated in simulators. However, there is a natural gap
between the simulator and the real-world NPP system. The error
between simulation and reality can potentially incur several drops
in performance when migrating the well-behaved agent that is
achieved in simulation and small-scale experimental conditions
to large-scale or real environments. It tends to be frustrating that
the same excellent performance cannot be guaranteed. In recent
years, scholars in the field of sim-to-real at NPPs have introduced
the concept of Robust AI [160,161]. This approach focuses on
utilizing meta-knowledge inherent in data, rather than the data
itself, for training purposes. To a certain extent, this mitigates
the inconsistencies between simulations and real-world scenarios.
There are many other efforts in mitigating this gap, namely sim-
to-real for robotics and some other situations [162–169], and
these advances can be hopefully applied in NPPs in future work
to acquire a robust and reliable agent.

• The interpretability of the model is inadequate. When we
use RL to assist humans in some tasks in NPPs, it is necessary
to pay close attention to the training process and the result of
the RL agent. DRL itself is a black-box nature. If there is a
problem of poor performance, we cannot hope that the relevant
personnel has rich experience and repair methods as in traditional
control. Therefore, in the current stage, we cannot expect that
the RL agent can completely replace human operators. They can
be utilized as an assistant during operations. Moreover, there
is much progress in the interpretability of RL and deep neural
networks [170–172].

• The generalization of the model needs to be further en-
hanced. The generalization capability of the DRL agent is of
importance to the RL community and there are many types of
research on this topic [173–177]. We find that all of our reviewed
papers set their focus on a small part of the whole NPP system,
such as a single heater or power starter. There is still a broad
space for exploration in the application of DRL in NPPs. For
example, can DRL successfully control multiple devices or even
the whole plant under some situations, e.g., emergence operation?
Can we train a single DRL agent that can solve many different
tasks in NPPs with a few interactions? Can we train a DRL agent
on one single task and then transfer it to a different task in NPPs?
These questions are all valuable and are expected to be solved in
the near future.

Despite the aforementioned issues of utilizing DRL methods in NPPs,
we believe it is very promising to combine DRL methods with NPPs.
These challenges also bring about many open problems for researchers
to address. We think the utilization of DRL algorithms in NPPs is one
of the most possible to realize the intelligent unmanned NPPs.
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6. Conclusion

This article focuses on the application of reinforcement learning
in the field of artificial intelligence in NPPs. We first introduce some
mainstream algorithms in RL, most of which have been applied to
specific NPP scenarios in some studies. Afterward, considering the
complex system nature of NPPs, we investigate the application of RL in
the power grid, wind power, thermal energy, robotics, etc., to pave the
way for subsequent use in NPPs. Finally, we conduct a block-by-block
investigation on the application of RL methods in some specific tasks
in NPPs by extensively reviewing the current research and advances of
the combination of DRL algorithms and NPPs. We carry out algorithmic
research for different situations such as power startup, collaborative
control, and emergency handling.

Unfortunately, there are quite a few articles about the application
of RL in NPPs. This field is still comparatively blank and many works
can be explored. Given the fact of the extensive application of RL in
complex systems, and the unique advantages of RL in dealing with
nonlinear complex problems, we expect that more advances in applying
DRL algorithms in NPPs can receive more attention and have further
development.
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