DOI QR코드

DOI QR Code

Secondary fragments of proton and helium ion beams in High-Density Polyethylene phantom: A Monte Carlo simulation study

  • M. Arif Efendi (Department of Biomedical Imaging, Advanced Medical and Dental Institute, Universiti Sains Malaysia) ;
  • Chee Keat Ying (Department of Biomedical Imaging, Advanced Medical and Dental Institute, Universiti Sains Malaysia)
  • Received : 2022.11.15
  • Accepted : 2023.12.12
  • Published : 2024.05.25

Abstract

In hadrontherapy, secondary fragments are generated by nuclear interactions of the incident heavy ion beam with the atomic nuclei of the target. It is important to determine the yield of production and the dose contribution of these secondary fragments in order to determine the radiobiological effectiveness more accurately. This work aims to fully identify the secondary fragments generated by nuclear interactions of proton and helium (4He) ion beams in a High-Density Polyethylene (HDPE) target and to investigate the dose contributions by secondary fragments. Incident protons with energies of 55.90 MeV and 105.20 MeV and helium ions with energies of 52.55 MeV/u and 103.50 MeV/u in the HDPE phantom have been investigated by the means of Geant4 Monte Carlo (MC) simulations. Simulated results were validated using NASA Space Radiation Laboratory (NSRL) Bragg curves experimental data. The results showed that the dose contribution of secondary fragments deriving from helium ion beams is three times higher than in the case of proton beams. This is due to a higher production of nuclear fragments in the case of helium ion beams. This work contributes to a better understanding of secondary fragments generated by protons and helium ions in the HDPE target.

Keywords

Acknowledgement

This work is supported by The Ministry of Higher Education Malaysia for the Fundamental Research Grant Scheme with Project Code: FRGS/1/2019/STG02/USM/02/7. Malaysia International Scholarship (MIS) is acknowledged for the scholarship to the first author. The authors are grateful to Dr. Michael Sivertz for providing Bragg curves experimental data from NASA Space Radiation Laboratory. Thanks to Assoc. Prof. Dr. Susanna Guatelli and Dr. David Bolst for providing Geant4 code and discussion of the manuscript.

References

  1. M. Durante, R. Orecchia, J.S. Loeffler, Charged-particle therapy in cancer: clinical uses and future perspectives, Nat. Rev. Clin. Oncol. 14 (2017) 483-495, https://doi.org/10.1038/nrclinonc.2017.30. 
  2. B. Jones, The potential clinical advantages of charged particle radiotherapy using protons or light ions, Clin. Oncol. 20 (2008) 555-563, https://doi.org/10.1016/j.clon.2008.02.012. 
  3. M. Durante, H. Paganetti, Nuclear physics in particle therapy: a review, Rep. Prog. Phys. 79 (2016), https://doi.org/10.1088/0034-4885/79/9/096702. 
  4. F. Tommasino, M. Durante, Proton Radiobiology, Cancers (Basel) 7 (2015) 353-381, https://doi.org/10.3390/cancers7010353. 
  5. J. Kempe, I. Gudowska, A. Brahme, Depth absorbed dose and LET distributions of therapeutic H1, He4, Li7, and C12 beams, Med. Phys. 34 (2006) 183-192, https://doi.org/10.1118/1.2400621. 
  6. I. Kantemiris, P. Karaiskos, P. Papagiannis, A. Angelopoulos, Dose and dose averaged LET comparison of 1H, 4He, 6Li, 8Be, 10B, 12C, 14N, and 16O ion beams forming a spread-out Bragg peak, Med. Phys. 38 (2011) 6585-6591, https://doi.org/10.1118/1.3662911. 
  7. M. Kramer, E. Scifoni, C. Schuy, M. Rovituso, W. Tinganelli, A. Maier, R. Kaderka, W. Kraft-Weyrather, S. Brons, T. Tessonnier, K. Parodi, M. Durante, Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality, Med. Phys. 43 (2016) 1995-2004, https://doi.org/10.1118/1.4944593. 
  8. R. Grun, T. Friedrich, M. Kramer, K. Zink, M. Durante, R. Engenhart-Cabillic, M. Scholz, Assessment of potential advantages of relevant ions for particle therapy: a model based study, Med. Phys. 42 (2015) 1037-1047, https://doi.org/10.1118/1.4905374. 
  9. Y. Kase, T. Kanai, Y. Matsumoto, Y. Furusawa, H. Okamoto, T. Asaba, M. Sakama, H. Shinoda, Microdosimetric measurements and estimation of human cell survival for heavy-ion beams, Radiat. Res. 166 (2006) 629-638, https://doi.org/10.1667/RR0536.1. 
  10. M.R. Raju, H.I. Amols, E. Bain, S.G. Carpenter, R.A. Cox, J.B. Robertson, A heavy particle comparative study. Part III: OER and RBE, Br. J. Radiol. 51 (1978) 712-719, https://doi.org/10.1259/0007-1285-51-609-712. 
  11. PTCOG, PTCOG - PTCOG patient statistics. https://www.ptcog.ch/index.php/ptcog-patient-statistics. (Accessed 16 November 2022). 
  12. T. Tessonnier, A. Mairani, S. Brons, P. Sala, F. Cerutti, A. Ferrari, T. Haberer, J. Debus, K. Parodi, Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements, Phys. Med. Biol. 62 (2017) 6784-6803, https://doi.org/10.1088/1361-6560/aa7b12. 
  13. M. Sapinski, Helium Beam Particle Therapy Facility, 2020 arXiv preprint arXiv: 2008.08674. 
  14. Particle Therapy Co-Operative Group, Particle therapy facilities under construction (update October 2022), https://www.ptcog.ch/index.php/facilities-under-construction. (Accessed 16 November 2022). 
  15. S. Mein, I. Dokic, C. Klein, T. Tessonnier, T.T. Bohlen, G. Magro, J. Bauer, A. Ferrari, K. Parodi, T. Haberer, J. Debus, A. Abdollahi, A. Mairani, Biophysical modeling and experimental validation of relative biological effectiveness (RBE) for 4He ion beam therapy, Radiat. Oncol. 14 (2019) 1-16, https://doi.org/10.1186/s13014-019-1295-z. 
  16. M. Marafini, R. Paramatti, D. Pinci, G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, P.M. Frallicciardi, C. Mancini-Terracciano, I. Mattei, S. Muraro, L. Piersanti, M. Rovituso, A. Rucinski, A. Russomando, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, C. Voena, V. Patera, Secondary radiation measurements for particle therapy applications: nuclear fragmentation produced by 4He ion beams in a PMMA target, Phys. Med. Biol. 62 (2017) 1291-1309, https://doi.org/10.1088/1361-6560/aa5307. 
  17. M. Rovituso, C. Schuy, U. Weber, S. Brons, M.A. Cortes-Giraldo, C. La Tessa, E. Piasetzky, D. Izraeli, D. Schardt, M. Toppi, E. Scifoni, M. Kramer, M. Durante, Fragmentation of 120 and 200 MeV u-14He ions in water and PMMA targets, Phys. Med. Biol. 62 (2017) 1310-1326, https://doi.org/10.1088/1361-6560/aa5302. 
  18. A. Embriaco, A. Attili, E.V. Bellinzona, Y. Dong, L. Grzanka, I. Mattei, S. Muraro, E. Scifoni, F. Tommasino, S.M. Valle, G. Battistoni, FLUKA simulation of target fragmentation in proton therapy, Phys. Med. 80 (2020) 342-346, https://doi.org/10.1016/J.EJMP.2020.09.018. 
  19. T. Pfuhl, F. Horst, C. Schuy, U. Weber, Dose build-up effects induced by delta electrons and target fragments in proton Bragg curves-measurements and simulations, Phys. Med. Biol. 63 (2018), 175002, https://doi.org/10.1088/1361-6560/AAD8FC. 
  20. H.F. Ou, B. Zhang, S.J. Zhao, Monte Carlo simulation for calculation of fragments produced by 400 MeV/u carbon ion beam in water, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 396 (2017) 18-25, https://doi.org/10.1016/j.nimb.2017.01.077. 
  21. D. Johnson, Y. Chen, S. Ahmad, Dose and linear energy transfer distributions of primary and secondary particles in carbon ion radiation therapy: a Monte Carlo simulation study in water, J. Med. Phys. 40 (2015) 214, https://doi.org/10.4103/0971-6203.170785. 
  22. C.K. Ying, D. Bolst, A. Rosenfeld, S. Guatelli, Characterization of the mixed radiation field produced by carbon and oxygen ion beams of therapeutic energy: a Monte Carlo simulation study, J. Med. Phys. 44 (2019) 263-269, https://doi.org/10.4103/jmp.JMP_40_19. 
  23. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, GEANT4 - a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (2003) 250-303, https://doi.org/10.1016/S0168-9002(03)01368-8. 
  24. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G.A.P. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G.G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P.M. Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M. G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tome, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J.P. Wellisch, D.C. Williams, D. Wright, H. Yoshida, M. Peirgentili, Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270-278, https://doi.org/10.1109/TNS.2006.869826. 
  25. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, P. Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Cooperman, M.A. Cortes-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Folger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Genser, V.M. Grichine, S. Guatelli, P. Gu'eye, P. Gumplinger, A.S. Howard, I. Hrivnacova, S. Hwang, S. Incerti, A. Ivanchenko, V. N. Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitrosi, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrovic, M.G. Pia, W. Pokorski, J. M. Quesada, M. Raine, M.A. Reis, A. Ribon, A. Ristic Fira, F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda, S. Tanaka, B. Tome, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke, M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, H. Yoshida, Recent developments in GEANT4, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 835 (2016) 186-225, https://doi.org/10.1016/j.nima.2016.06.125. 
  26. C. La Tessa, M. Sivertz, I.H. Chiang, D. Lowenstein, A. Rusek, Overview of the NASA space radiation laboratory, Life Sci. Space Res. 11 (2016) 18-23, https://doi.org/10.1016/J.LSSR.2016.10.002. 
  27. BNL, NSRL user guide. https://www.bnl.gov/nsrl/userguide/bragg-curves-andpeaks.php. (Accessed 24 March 2022). 
  28. C. Zeitlin, C. La Tessa, The role of nuclear fragmentation in particle therapy and space radiation protection, Front. Oncol. 6 (2016) 1-13, https://doi.org/10.3389/fonc.2016.00065. 
  29. L.T. Tran, L. Chartier, D. Bolst, A. Pogossov, S. Guatelli, M. Petasecca, M.L.F. Lerch, D.A. Prokopovich, M.I. Reinhard, B. Clasie, N. Depauw, H. Kooy, J.B. Flanz, A. McNamara, H. Paganetti, C. Beltran, K. Furutani, V.L. Perevertaylo, M. Jackson, A.B. Rosenfeld, Characterization of proton pencil beam scanning and passive beam using a high spatial resolution solid-state microdosimeter, Med. Phys. 44 (2017) 6085-6095, https://doi.org/10.1002/mp.12563. 
  30. D. Bolst, L.T. Tran, S. Guatelli, N. Matsufuji, A.B. Rosenfeld, Modelling the biological beamline at HIMAC using Geant4, in: J. Phys. Conf. Ser., IOP Publishing, 2019, 012003, https://doi.org/10.1088/1742-6596/1154/1/012003. 
  31. X. Zhu, G. El Fakhri, Proton therapy verification with PET imaging, Theranostics 3 (2013) 731-740, https://doi.org/10.7150/thno.5162. 
  32. W. Enghardt, P. Crespo, F. Fiedler, R. Hinz, K. Parodi, J. Pawelke, F. Ponisch, Charged hadron tumour therapy monitoring by means of PET, in: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect, Assoc. Equip., 2004, pp. 284-288, https://doi.org/10.1016/j.nima.2004.03.128. 
  33. W. Enghardt, K. Parodi, P. Crespo, F. Fiedler, J. Pawelke, F. Ponisch, Dose quantification from in-beam positron emission tomography, in: Radiother. Oncol., Elsevier Ireland Ltd, 2004, https://doi.org/10.1016/S0167-8140(04)80024-0. 
  34. A. Chacon, M. Safavi-Naeini, D. Bolst, S. Guatelli, D.R. Franklin, Y. Iwao, G. Akamatsu, H. Tashima, E. Yoshida, F. Nishikido, A. Kitagawa, A. Mohammadi, M.C. Gregoire, T. Yamaya, A.B. Rosenfeld, Monte Carlo investigation of the characteristics of radioactive beams for heavy ion therapy, Sci. Rep. 9 (2019) 1-12, https://doi.org/10.1038/s41598-019-43073-1.