과제정보
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2022R1I1A3064473).
참고문헌
- M.U. Ghani, W.C. Karl, Fast enhanced CT metal artifact reduction using data domain deep learning, IEEE Trans. Comput. Imag. 6 (2020) 181-193. https://doi.org/10.1109/TCI.2019.2937221
- K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising, IEEE Trans. Image Process. 26 (2017) 3142-3155. https://doi.org/10.1109/TIP.2017.2662206
- M.F. Spadea, M. Maspero, P. Zaffino, J. Seco, Deep learning based synthetic-CT generation in radiotherapy and PET: a review, Med. Phys. 48 (2021) 6537-6566. https://doi.org/10.1002/mp.15150
- M.H. Hesamian, W. Jia, X. He, P. Kennedy, Deep learning techniques for medical image segmentation: achievements and challenges, J. Digit. Imag. 32 (2019) 582-596. https://doi.org/10.1007/s10278-019-00227-x
- J. Solomon, P. Lyu, D. Marin, E. Samei, Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm, Med. Phys. 47 (2020) 3961-3971. https://doi.org/10.1002/mp.14319
- A.S. Chaudhari, E. Mittra, G.A. Davidzon, P. Gulaka, H. Gandhi, A. Brown, T. Zhang, S. Srinivas, E. Gong, G. Zaharchuk, H. Jadvar, NpJ Digit. Med. 23 (2021) 127.
- G. Jaliparthi, P.F. Martone, A.V. Stolin, R.R. Raylman, Deep residual-convolutional neural networks for event positioning in an monolithic annular PET scanner, Phys. Med. Biol. 66 (2021), 145008.
- H. Arabi, A. AkhavanAllaf, A. Sanaat, I. Shiri, H. Zaidi, The promise of artificial intelligence and deep learning in PET and SPECT imaging, Phys. Med. 83 (2021) 122-137. https://doi.org/10.1016/j.ejmp.2021.03.008
- T. Wang, Y. Lei, Y. Fu, W.J. Curran, T. Liu, J.A. Nye, X. Yang, Machine learning in quantitative PET: a review of attenuation correction and low-count image reconstruction methods, Phys. Med. 76 (2020) 294-306. https://doi.org/10.1016/j.ejmp.2020.07.028
- S.-J. Lee, C.-H. Baek, A new method for position determination of scintillation pixel in PET detector module using simulation LUT and MLPE, Nucl. Instrum. Methods Phys. Res. 1016 (2021), 165750.
- B. Jo, S.-J. Lee, Preliminary study on PET detector digital positioning of scintillation pixels using deep learning, J. Kor. Phys. Soc. 83 (2023) 403-408.
- F. Cayouette, D. Laurendeau, C. Moisan, DETECT2000: an improved monte-carlo simulator for the computer aided design of photon sensing devices, Proc. SPIE, Quebec 4833 (2003) 69-76.
- M. Makek, D. Bosnar, A.M. Kozuljevic, L. Pavelic, Investigation of GaGG:Ce with TOFPET2 ASIC readout for applications in gamma imaging systems, Crystals 10 (2020) 1073.
- J. Du, J.P. Schmall, Y. Yang, K. Di, E. Roncali, G.S. Mitchell, S. Buckley, C. Jackson, S.R. Cherry, Med. Phys. 42 (2015) 585-599. https://doi.org/10.1118/1.4905088