Acknowledgement
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (Grant No. 20211510100050, Development of a real-time detection system for unidentified RCS leakage less than 0.5gpm).
References
- Korea Institute of Nuclear Safety, Reports of Accident and Breakdown in the Nuclear Power Plant, Korea Institute of Nuclear Safety, 2009, 170327K4.
- Operational Performance Information System for Nuclear Power Plant, Nuclear accident and failure status. http://opis.kins.re.kr/opis?act=KROBA3100R last modified Jan 05, 2023, accessed January 16, 2023.
- Y.S. Kim, D.J. Euh, W.S. Kim, T.S. Kwon, Investigation of leakage characteristics on major equipment/component in reactor system, The KSFM Journal of Fluid Machinery 22 (2019) 30-35.
- S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997) 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- M. Schuster, K.K. Paliwal, Bidirectional recurrent neural networks, IEEE Trans. Signal Process. 45 (1997) 2673-2681. https://doi.org/10.1109/78.650093
- H.S. Jo, J.H. Park, M.G. Na, Prediction of Relative Humidity Injected into the Sensor Tube of an RCPB Leakage Detection System Using Artificial Intelligence, Korean Nuclear Society Virtual Autumn Meeting, 2021.
- J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13 (2012) 281-305.
- J.J. Jung, H.Y. Yun, I.K. Park, H.G. Jo, The CUPID CODE development and assessment strategy, Nucl. Eng. Technol. 42 (2010) 636-655. https://doi.org/10.5516/NET.2010.42.6.636
- T.S. Kwon, J.R. Kim, C.K. Choi, J.S. Park, C.R. Choi, Development of an unidentified RCS leakage detection sensor system less than 0.5 gpm, The KSFM Journal of Fluid Machinery 24 (2021) 13-19. https://doi.org/10.5293/kfma.2021.24.2.013
- S.J. Park, J.K. Park, G.Y. Heo, Transient diagnosis and prognosis for secondary system in nuclear power plants, Nucl. Eng. Technol. 48 (2016) 1184-1191. https://doi.org/10.1016/j.net.2016.03.009
- Y.D. Koo, Y.J. An, C.H. Kim, M.G. Na, Nuclear reactor vessel water level prediction during severe accidents using deep neural networks, Nucl. Eng. Technol. 51 (2019) 723-730. https://doi.org/10.1016/j.net.2018.12.019
- H.M. Park, J.H. Lee, K.D. Kim, Wall temperature prediction at critical heat flux using a machine learning model, Ann. Nucl. Energy 141 (2020).
- H.S. Jo, Y.D. Koo, J.H. Park, S.W. Oh, C.H. Kim, M.G. Na, Prediction of golden time for recovering SISs using deep fuzzy neural networks with rule-dropout, Nucl. Eng. Technol. 53 (2021) 4014-4021. https://doi.org/10.1016/j.net.2021.06.017
- H.J. Kim, J.H. Kim, Lonh-term prediction of safety parameters with uncertainty estimation in emergency situations at nuclear power plants, Eng. Technol. 55 (2023) 1630-1643.
- T. Tasakos, G. Ioannou, V. Verma, G. Alexandridis, A. Dokhane, A. Stafylopatis, Deep learning-based anomaly detection in nuclear rector cores, in: Proceedings of the International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2021), 2021.
- Y.H. Choi, G.M. Yoon, J.H. Kim, Unsupervised learning algorithm for signal validation in emergency situation at nuclear power plants, Nucl. Eng. Technol. 54 (2022) 1230-1244. https://doi.org/10.1016/j.net.2021.10.006
- K.H. Yoo, H. J, Back, M.G. Na, S. Hur, H.M. Kim, Smart support system for diagnosing severe accidents in nuclear power plants, Nucl. Eng. Technol. 50 (2018) 562-569. https://doi.org/10.1016/j.net.2018.03.007
- J. She, T. Shi, S. Xue, Y. Zhu, S. Lu, P. Sun, H. Cao, Diagnosis and prediction for loss of coolant accidents in nuclear power plants using deep learning methods, Front. Energy Res. 9 (2021) 1-9.
- D.I. Lee, P.H. Seong, J.H. Kim, Autonomous operation algorithm for safety systems of nuclear power plants by using long-short term memory and function-based hierarchical framework, Ann. Nucl. Energy 119 (2018) 287-299. https://doi.org/10.1016/j.anucene.2018.05.020
- J.Y. Bae, J.M. Lee, S.J. Lee, Deep reinforcement learning for a multi-objective operation in a nuclear power plant, Nucl. Eng. Technol. 55 (2023) 3277-3290.
- J.H. Park, H.S. Jo, S.H. Lee, S.W. Oh, M.G. Na, A reliable intelligent diagnostic assistant for nuclear power plants using explainable artificial intelligence of GRUAE, LightGBM and SHAP, Nucl. Eng. Technol. 54 (2022) 1271-1287. https://doi.org/10.1016/j.net.2021.10.024
- J.H. Shin, J.Y. Bae, J.M. Kim, S.J. Lee, An interpretable convolutional neural network for nuclear power plant abnormal events, Appl. Soft Comput. 133 (2023) 1-16.
- Y. Fu, D. Zhang, Y. Xiao, Z. Wang, H. Zhou, An interpretable time series data prediction framework for severe accidents in nuclear power plants, Entropy 25 (2023) 1-18.
- Vaisala Oyj, Calculation Formulas for Humidity-Humidity Conversion Formulas; Vaisala, Finland, Helsinki, 2013.
- C.K. Koc, Analysis of sliding window techniques for exponentiation, Comput. Math. Appl. 30 (1995) 17-24. https://doi.org/10.1016/0898-1221(95)00153-P
- S. Ruder, An Overview of Gradient Descent Optimization Algorithms, 2016 arXiv preprint arXiv:1609.04747.
- D.P. Kingma, J.L. Ba, Adam: A Method for Stochastic Optimization, 2014 arXiv preprint arXiv:1412.6980.