DOI QR코드

DOI QR Code

Seismic performance evaluation of fiber-reinforced prestressed concrete containments subject to earthquake ground motions

  • Xiaolan Pan (College of Civil Engineering, Taiyuan University of Technology) ;
  • Ye Sun (College of Civil Engineering, Taiyuan University of Technology) ;
  • Zhi Zheng (College of Civil Engineering, Taiyuan University of Technology) ;
  • Yuchen Zhai (College of Civil Engineering, Taiyuan University of Technology) ;
  • Lianpeng Zhang (State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University)
  • Received : 2023.05.05
  • Accepted : 2023.12.07
  • Published : 2024.05.25

Abstract

Given the unpredictability of the occurrence of the earthquake and other potential disasters into consideration, the nuclear power plant may be confronted with beyond design-basis earthquake load in the future. The containment structure may be severely damaged under such severe earthquake loading, increasing the risk of containment concrete cracking and potential radioactive materials leaking. Moreover, initial damage caused by the earthquake may significantly alter the pressure performance of the containment under follow-up internal pressure. To compromise the dangers of beyond design-basis earthquake to the containment, an alternative of replacing the conventional concrete with fiber-reinforced concrete (FRC) to upgrade the seismic resistance capacity of the containment is attempted and thoroughly researched. In this study, the influence of various fiber types such as rigid fiber and mixed fiber is regarded to constitute fiber-reinforced PCCVs. The physical properties of traditional and fiber-reinforced PCCVs under earthquake ground motions are scientifically compared and identified by using traditional and proposed evaluation indices. The results indicate that both the traditional evaluation index (i.e. top displacement, stress, strain) and the proposed damage index are greatly reduced by the practice of fiber strengthening under earthquake ground motions.

Keywords

Acknowledgement

This investigation is supported by National Natural Science Foundation of China (No. 52208191, 52205064), S&T Program of Hebei (No. E2021210065), Shanxi Province Science Foundation (No. 202303021211079), and Shanxi Scholarship Council of China (No. 2023-085). These supports are greatly appreciated.

References

  1. S. Jin, H. Rong, X.T. Lyu, Probabilistic seismic performance evaluation of nuclear containment structure subjected to far-fault ground motions, Structures 32 (2021) 2232-2246.  https://doi.org/10.1016/j.istruc.2021.04.013
  2. T. Taira, Y. Sasaki, H. Shibata, H. Sato, T. Kubo, S. Kawakami, T. Ohno, Y. Karasawa, Large scale seismic proving test of BMR reactor pressure vessel by Tadotsu table, in: Transactions of the 11th SMiRT Conference, 1991. Berlin, Germany. 
  3. S. Nakamura, Y. Sasaki, K. Horibe, M. Nakajima, K. Hoshino, T. Takahashi, T. Hagesawa, T. Kei, T. Meida, K. Takigushi, Plan of the seismic proving test for reinforced concrete containment vessel (part1: test model and test model design), in: Transactions of the 14th SMiRT Conference, 1997. Lyon, France. 
  4. S. Nakamura, K. Terada, T. Suzuki, M. Soejima, Y. Yamaura, H. Eto, M. Goto, T. Kobayashi, Seismic proving test of concrete containment vessels (part1: model tests of a curved shear wall for the PCCV), in: Transactions of the 11th WCEE Conference, 1996. Acapulco. 
  5. T. Hirama, M. Goto, T. Hasegawa, M. Kanechika, T. Kei, T. Mieda, H. Abe, K. Takiguchi, H. Akiyama, Seismic proof test of a reinforced concrete containment vessel (RCCV): Part 1: test model and pressure test, Nucl. Eng. Des. 235 (13) (2005) 1335-1348.  https://doi.org/10.1016/j.nucengdes.2005.01.002
  6. T. Hirama, M. Goto, K. Shiba, T. Kobayashi, R. Tanaka, S. Tsurumaki, K. Takiguchi, H. Akiyama, Seismic proof test of a reinforced concrete containment vessel (RCCV): Part 2: results of shaking table tests, Nucl. Eng. Des. 235 (13) (2005) 1349-1371.  https://doi.org/10.1016/j.nucengdes.2005.01.001
  7. T. Hirama, M. Goto, H. Kumagai, Y. Naito, A. Suzuki, H. Abe, K. Takiguchi, H. Akiyama, Seismic proof test of a reinforced concrete containment vessel (RCCV) Part 3. Evaluation of seismic safety margin, Nucl. Eng. Des. 237 (2007) 1128-1139.  https://doi.org/10.1016/j.nucengdes.2007.01.009
  8. S. Kitamura, M. Morishita, S. Yabana, K. Hirata, K. Umeki, Shaking table tests with large test specimens of seismically isolated FBR plants: Part 1-response behavior of test specimen under design ground motions, ASME Pressure Vessels Piping Conf. 43710 (2009) 213-220. 
  9. Y.C. Chen, W.T. Lin, T.L. Chu, Y.C. Wu, Seismic test and numerical verification of the scaled-down reinforced concrete containment vessel, J. Vibroeng. 16 (3) (2014) 1162-1167. 
  10. J. Liu, J.W. Kong, X.J. Kong, Shaking table model tests of concrete containment Vessel (CCV) for CPR1000 nuclear power plant, Prog. Nucl. Energy 93 (Nov) (2016) 186-204.  https://doi.org/10.1016/j.pnucene.2016.08.016
  11. A. Duan, Z.Z. Zhao, J. Chen, J.R. Qian, W.L. Jin, Nonlinear time history analysis of a pre-stressed concrete containment vessel model under Japan's March 11 earthquake, Comput. Concr. 13 (1) (2014) 1-16.  https://doi.org/10.12989/cac.2014.13.1.001
  12. D.D. Nguyen, B. Thusa, H. Park, M.S. Azad, T.H. Lee, Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building, Nucl. Eng. Technol. 53 (8) (2021) 2696-2707.  https://doi.org/10.1016/j.net.2021.02.006
  13. T.K. Mandal, S. Ghosh, N.N. Pujari, Seismic fragility analysis of a typical Indian PHWR containment: comparison of fragility models, Struct. Saf. 58 (2016) 11-19.  https://doi.org/10.1016/j.strusafe.2015.08.003
  14. Q. Ma, O.S. Kwon, T.H. Kwon, Y.S. Choun, Influence of frequency content of ground motions on seismic fragility of equipment in nuclear power plant, Eng. Struct. 224 (2020), 111220. 
  15. Damage performance based seismic capacity and fragility analysis of existing concrete containment structure subjected to near fault ground motions, Nucl. Eng. Des. 360 (Apr) (2020) 110478.1-110478.15.  https://doi.org/10.1016/j.nucengdes.2019.110478
  16. X. Bao, M.H. Zhang, C.H. Zhai, Fragility analysis of a containment structure under far-fault and near-fault seismic sequences considering post-mainshock damage states, Eng. Struct. 198 (Nov.1) (2019) 109511.1-109511.19.  https://doi.org/10.1016/j.engstruct.2019.109511
  17. X. Bao, C.H. Zhai, M.H. Zhang, L.J. Xu, Seismic capacity assessment of postmainshock damaged containment structures using nonlinear incremental dynamic analysis, Struct. Des. Tall Special Build. 29 (4) (2020) e1706.1-e1706.19. 
  18. J. Michels, R. Christen, D. Waldmann, Experimental and numerical investigation on postcracking behavior of steel fiber reinforced concrete, Eng. Fract. Mech. 98 (2013) 326-349.  https://doi.org/10.1016/j.engfracmech.2012.11.004
  19. C.L. Xin, Z.Z. Wang, J.M. Zhou, Shaking table tests on seismic behavior of polypropylene fiber reinforced concrete tunnel lining, Tunn. Undergr. Space Technol. 88 (JUN) (2019) 1-15.  https://doi.org/10.1016/j.tust.2019.02.019
  20. M. Hua, H.W. Hong, B.L. Zhen, Experimental study on the seismic performance of macro-synthetic fiber- reinforced concrete ductile columns, Adv. Mater. Res. 446-449 (2012) 2345-2350.  https://doi.org/10.4028/www.scientific.net/AMR.446-449.2345
  21. J. Carrillo, S.M. Alcocer, J.A. Pincheira, Shaking table tests of steel fiber reinforced concrete walls for housing, in: 15th World Conference on Earthquake Engineering, 15WCEE, 2012. 
  22. Y.T. Pang, L. Cai, J. Zhong, Seismic performance evaluation of fiber-reinforced concrete bridges under near-fault and far-field ground motions, Structures 28 (2020) 1366-1383.  https://doi.org/10.1016/j.istruc.2020.09.049
  23. M.K. Kim, J.H. Park, Y.S. Choun, I.K. Choi, Seismic fragility analysis for steel fiber applicability assessment for containment structure of nuclear power plant, J. Comput. Struct. Eng. Inst. Korea. 25 (5) (2012) 381-388.  https://doi.org/10.7734/COSEIK.2012.25.5.381
  24. Y.S. Choun, J. Park, Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement, Nucl. Eng. Technol. 47 (6) (2015) 756-765.  https://doi.org/10.1016/j.net.2015.06.006
  25. Z. Zheng, C.Y. Su, X.L. Pan, Y. Sun, W. Yuan, W.T. Wang, Quantitative damage evaluation of prestressed concrete containments with steel fiber strengthening under internal pressure, Eng. Struct. 278 (2023), 115494. 
  26. Z. Zheng, Y. Wang, S. Huang, X.L. Pan, C.Y. Su, Y. Sun, Investigation on damage assessment of fiber-reinforced prestressed concrete containment under temperature and subsequent internal pressure, Nucl. Eng. Technol. 55 (6) (2023) 2053-2068.  https://doi.org/10.1016/j.net.2023.02.035
  27. Z. Zheng, Y. Wang, D.M. Wang, X.L. Pan, C.Y. Su, C.H. Li, The performance enhancement of containment with fiber reinforcement following a LOCA considering different ambient conditions, Int. J. Pres. Ves. Pip. 205 (2023), 105004. 
  28. Z. Zheng, Y. Sun, X.L. Pan, J.C. Kong, The optimum steel fiber reinforcement for prestressed concrete containment under internal pressure, Nucl. Eng. Technol. 54 (6) (2021) 2156-2172.  https://doi.org/10.1016/j.net.2021.12.015
  29. J. Lubliner, J. Oliver, S. Oller, et al., A plastic-damage model for concrete, Int. J. Solid Struct. 25 (3) (1989) 299-326.  https://doi.org/10.1016/0020-7683(89)90050-4
  30. The Ministry of Construction of the People's Republic of China, MOC. Code for Design of Concrete Structures. GB50010-2002, Chinese code, 2002. 
  31. ABAQUS, ABAQUS Standard User's Manual, Version 6.14, Dassault Systemes Corp, Providence, 2012. 
  32. F. Sidorof, Description of anisotropic damage application to elasticity, in: Proceedings of the IUTAM Symposium on Physical Nonlinearities in Structural Analysis, Berlin Springer, 1981. 
  33. L.H. Xu, C.M. Wei, B. Li, Damage evolution of steel-polypropylene hybrid fiber reinforced concrete: experimental and numerical investigation, Adv. Mater. Sci. Eng. (2018) 1687-8434. 
  34. D.Y. Gao, Study on uniaxial tension stress-strain relation of steel fiber reinforced concrete, Water Power 11 (1991) 54-58. 
  35. D.Y. Gao, Study on uniaxial compression stress-strain relation of steel fiber reinforced concrete, J. Hydraul. Eng. 10 (1991) 43-48. 
  36. G.C. Zhong, Y. Zhou, Y. Xiao, Stress-strain behavior of steel-polyvinyl alcohol hybrid fiber reinforced concrete under axial compression and tension, Eng. Mech. 37 (Z1) (2020) 111-120. 
  37. Y. Chi, M. Yu, L. Huang, L.H. Xu, Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity, Eng. Struct. 148 (2017) 23-35. https://doi.org/10.1016/j.engstruct.2017.06.039
  38. The Ministry of Construction of the People's Republic of China, MOC, Standard for Design of Steel Structures. GB50017-2017, Chinese standard, 2017. 
  39. The Ministry of Construction of the People's Republic of China, MOC, Code for Seismic Design of Nuclear Power Plants, GB5vols. 0267-97, Chinese code, 1998. 
  40. A. Bahuguna, M. Firoj, Nonlinear seismic performance of nuclear structure with soil-structure interaction, Iran. J.Sci.Technol.Transact.Civ.Eng. 46 (4) (2022) 2975-2988.  https://doi.org/10.1007/s40996-021-00728-2
  41. N. Nakamura, S. Akita, S. Suzuki, T. Koba, M. Koba, S. Nakamura, T. Nakano, Study of ultimate seismic response and fragility evaluation of nuclear power building using nonlinear three-dimensional finite element model, Nucl. Eng. Des. 240 (1) (2010) 166-180.  https://doi.org/10.1016/j.nucengdes.2009.10.018
  42. Z. Zheng, C.H. Zhai, X. Bao, X.L. Pan, Seismic capacity estimation of a reinforced concrete containment building considering bidirectional cyclic effect, Adv. Struct. Eng. 22 (5) (2019) 1106-1120. https://doi.org/10.1177/1369433218806034