Acknowledgement
This investigation is supported by National Natural Science Foundation of China (No. 52208191, 52205064), S&T Program of Hebei (No. E2021210065), Shanxi Province Science Foundation (No. 202303021211079), and Shanxi Scholarship Council of China (No. 2023-085). These supports are greatly appreciated.
References
- S. Jin, H. Rong, X.T. Lyu, Probabilistic seismic performance evaluation of nuclear containment structure subjected to far-fault ground motions, Structures 32 (2021) 2232-2246. https://doi.org/10.1016/j.istruc.2021.04.013
- T. Taira, Y. Sasaki, H. Shibata, H. Sato, T. Kubo, S. Kawakami, T. Ohno, Y. Karasawa, Large scale seismic proving test of BMR reactor pressure vessel by Tadotsu table, in: Transactions of the 11th SMiRT Conference, 1991. Berlin, Germany.
- S. Nakamura, Y. Sasaki, K. Horibe, M. Nakajima, K. Hoshino, T. Takahashi, T. Hagesawa, T. Kei, T. Meida, K. Takigushi, Plan of the seismic proving test for reinforced concrete containment vessel (part1: test model and test model design), in: Transactions of the 14th SMiRT Conference, 1997. Lyon, France.
- S. Nakamura, K. Terada, T. Suzuki, M. Soejima, Y. Yamaura, H. Eto, M. Goto, T. Kobayashi, Seismic proving test of concrete containment vessels (part1: model tests of a curved shear wall for the PCCV), in: Transactions of the 11th WCEE Conference, 1996. Acapulco.
- T. Hirama, M. Goto, T. Hasegawa, M. Kanechika, T. Kei, T. Mieda, H. Abe, K. Takiguchi, H. Akiyama, Seismic proof test of a reinforced concrete containment vessel (RCCV): Part 1: test model and pressure test, Nucl. Eng. Des. 235 (13) (2005) 1335-1348. https://doi.org/10.1016/j.nucengdes.2005.01.002
- T. Hirama, M. Goto, K. Shiba, T. Kobayashi, R. Tanaka, S. Tsurumaki, K. Takiguchi, H. Akiyama, Seismic proof test of a reinforced concrete containment vessel (RCCV): Part 2: results of shaking table tests, Nucl. Eng. Des. 235 (13) (2005) 1349-1371. https://doi.org/10.1016/j.nucengdes.2005.01.001
- T. Hirama, M. Goto, H. Kumagai, Y. Naito, A. Suzuki, H. Abe, K. Takiguchi, H. Akiyama, Seismic proof test of a reinforced concrete containment vessel (RCCV) Part 3. Evaluation of seismic safety margin, Nucl. Eng. Des. 237 (2007) 1128-1139. https://doi.org/10.1016/j.nucengdes.2007.01.009
- S. Kitamura, M. Morishita, S. Yabana, K. Hirata, K. Umeki, Shaking table tests with large test specimens of seismically isolated FBR plants: Part 1-response behavior of test specimen under design ground motions, ASME Pressure Vessels Piping Conf. 43710 (2009) 213-220.
- Y.C. Chen, W.T. Lin, T.L. Chu, Y.C. Wu, Seismic test and numerical verification of the scaled-down reinforced concrete containment vessel, J. Vibroeng. 16 (3) (2014) 1162-1167.
- J. Liu, J.W. Kong, X.J. Kong, Shaking table model tests of concrete containment Vessel (CCV) for CPR1000 nuclear power plant, Prog. Nucl. Energy 93 (Nov) (2016) 186-204. https://doi.org/10.1016/j.pnucene.2016.08.016
- A. Duan, Z.Z. Zhao, J. Chen, J.R. Qian, W.L. Jin, Nonlinear time history analysis of a pre-stressed concrete containment vessel model under Japan's March 11 earthquake, Comput. Concr. 13 (1) (2014) 1-16. https://doi.org/10.12989/cac.2014.13.1.001
- D.D. Nguyen, B. Thusa, H. Park, M.S. Azad, T.H. Lee, Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building, Nucl. Eng. Technol. 53 (8) (2021) 2696-2707. https://doi.org/10.1016/j.net.2021.02.006
- T.K. Mandal, S. Ghosh, N.N. Pujari, Seismic fragility analysis of a typical Indian PHWR containment: comparison of fragility models, Struct. Saf. 58 (2016) 11-19. https://doi.org/10.1016/j.strusafe.2015.08.003
- Q. Ma, O.S. Kwon, T.H. Kwon, Y.S. Choun, Influence of frequency content of ground motions on seismic fragility of equipment in nuclear power plant, Eng. Struct. 224 (2020), 111220.
- Damage performance based seismic capacity and fragility analysis of existing concrete containment structure subjected to near fault ground motions, Nucl. Eng. Des. 360 (Apr) (2020) 110478.1-110478.15. https://doi.org/10.1016/j.nucengdes.2019.110478
- X. Bao, M.H. Zhang, C.H. Zhai, Fragility analysis of a containment structure under far-fault and near-fault seismic sequences considering post-mainshock damage states, Eng. Struct. 198 (Nov.1) (2019) 109511.1-109511.19. https://doi.org/10.1016/j.engstruct.2019.109511
- X. Bao, C.H. Zhai, M.H. Zhang, L.J. Xu, Seismic capacity assessment of postmainshock damaged containment structures using nonlinear incremental dynamic analysis, Struct. Des. Tall Special Build. 29 (4) (2020) e1706.1-e1706.19.
- J. Michels, R. Christen, D. Waldmann, Experimental and numerical investigation on postcracking behavior of steel fiber reinforced concrete, Eng. Fract. Mech. 98 (2013) 326-349. https://doi.org/10.1016/j.engfracmech.2012.11.004
- C.L. Xin, Z.Z. Wang, J.M. Zhou, Shaking table tests on seismic behavior of polypropylene fiber reinforced concrete tunnel lining, Tunn. Undergr. Space Technol. 88 (JUN) (2019) 1-15. https://doi.org/10.1016/j.tust.2019.02.019
- M. Hua, H.W. Hong, B.L. Zhen, Experimental study on the seismic performance of macro-synthetic fiber- reinforced concrete ductile columns, Adv. Mater. Res. 446-449 (2012) 2345-2350. https://doi.org/10.4028/www.scientific.net/AMR.446-449.2345
- J. Carrillo, S.M. Alcocer, J.A. Pincheira, Shaking table tests of steel fiber reinforced concrete walls for housing, in: 15th World Conference on Earthquake Engineering, 15WCEE, 2012.
- Y.T. Pang, L. Cai, J. Zhong, Seismic performance evaluation of fiber-reinforced concrete bridges under near-fault and far-field ground motions, Structures 28 (2020) 1366-1383. https://doi.org/10.1016/j.istruc.2020.09.049
- M.K. Kim, J.H. Park, Y.S. Choun, I.K. Choi, Seismic fragility analysis for steel fiber applicability assessment for containment structure of nuclear power plant, J. Comput. Struct. Eng. Inst. Korea. 25 (5) (2012) 381-388. https://doi.org/10.7734/COSEIK.2012.25.5.381
- Y.S. Choun, J. Park, Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement, Nucl. Eng. Technol. 47 (6) (2015) 756-765. https://doi.org/10.1016/j.net.2015.06.006
- Z. Zheng, C.Y. Su, X.L. Pan, Y. Sun, W. Yuan, W.T. Wang, Quantitative damage evaluation of prestressed concrete containments with steel fiber strengthening under internal pressure, Eng. Struct. 278 (2023), 115494.
- Z. Zheng, Y. Wang, S. Huang, X.L. Pan, C.Y. Su, Y. Sun, Investigation on damage assessment of fiber-reinforced prestressed concrete containment under temperature and subsequent internal pressure, Nucl. Eng. Technol. 55 (6) (2023) 2053-2068. https://doi.org/10.1016/j.net.2023.02.035
- Z. Zheng, Y. Wang, D.M. Wang, X.L. Pan, C.Y. Su, C.H. Li, The performance enhancement of containment with fiber reinforcement following a LOCA considering different ambient conditions, Int. J. Pres. Ves. Pip. 205 (2023), 105004.
- Z. Zheng, Y. Sun, X.L. Pan, J.C. Kong, The optimum steel fiber reinforcement for prestressed concrete containment under internal pressure, Nucl. Eng. Technol. 54 (6) (2021) 2156-2172. https://doi.org/10.1016/j.net.2021.12.015
- J. Lubliner, J. Oliver, S. Oller, et al., A plastic-damage model for concrete, Int. J. Solid Struct. 25 (3) (1989) 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
- The Ministry of Construction of the People's Republic of China, MOC. Code for Design of Concrete Structures. GB50010-2002, Chinese code, 2002.
- ABAQUS, ABAQUS Standard User's Manual, Version 6.14, Dassault Systemes Corp, Providence, 2012.
- F. Sidorof, Description of anisotropic damage application to elasticity, in: Proceedings of the IUTAM Symposium on Physical Nonlinearities in Structural Analysis, Berlin Springer, 1981.
- L.H. Xu, C.M. Wei, B. Li, Damage evolution of steel-polypropylene hybrid fiber reinforced concrete: experimental and numerical investigation, Adv. Mater. Sci. Eng. (2018) 1687-8434.
- D.Y. Gao, Study on uniaxial tension stress-strain relation of steel fiber reinforced concrete, Water Power 11 (1991) 54-58.
- D.Y. Gao, Study on uniaxial compression stress-strain relation of steel fiber reinforced concrete, J. Hydraul. Eng. 10 (1991) 43-48.
- G.C. Zhong, Y. Zhou, Y. Xiao, Stress-strain behavior of steel-polyvinyl alcohol hybrid fiber reinforced concrete under axial compression and tension, Eng. Mech. 37 (Z1) (2020) 111-120.
- Y. Chi, M. Yu, L. Huang, L.H. Xu, Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity, Eng. Struct. 148 (2017) 23-35. https://doi.org/10.1016/j.engstruct.2017.06.039
- The Ministry of Construction of the People's Republic of China, MOC, Standard for Design of Steel Structures. GB50017-2017, Chinese standard, 2017.
- The Ministry of Construction of the People's Republic of China, MOC, Code for Seismic Design of Nuclear Power Plants, GB5vols. 0267-97, Chinese code, 1998.
- A. Bahuguna, M. Firoj, Nonlinear seismic performance of nuclear structure with soil-structure interaction, Iran. J.Sci.Technol.Transact.Civ.Eng. 46 (4) (2022) 2975-2988. https://doi.org/10.1007/s40996-021-00728-2
- N. Nakamura, S. Akita, S. Suzuki, T. Koba, M. Koba, S. Nakamura, T. Nakano, Study of ultimate seismic response and fragility evaluation of nuclear power building using nonlinear three-dimensional finite element model, Nucl. Eng. Des. 240 (1) (2010) 166-180. https://doi.org/10.1016/j.nucengdes.2009.10.018
- Z. Zheng, C.H. Zhai, X. Bao, X.L. Pan, Seismic capacity estimation of a reinforced concrete containment building considering bidirectional cyclic effect, Adv. Struct. Eng. 22 (5) (2019) 1106-1120. https://doi.org/10.1177/1369433218806034