DOI QR코드

DOI QR Code

Methodology for predicting optimal friction support location to attenuate vibrational energy in piping systems

  • Minseok Lee (Department of Mechanical Engineering, Pusan National University) ;
  • Yong Hoon Jang (School of Mechanical Enginnering, Yonsei University) ;
  • Seunghun Baek (Department of Mechanical Engineering, Pusan National University)
  • 투고 : 2023.08.01
  • 심사 : 2023.12.06
  • 발행 : 2024.05.25

초록

This research paper proposes a novel methodology for predicting the optimal location of friction supports to effectively mitigate vibrational energy in piping systems. The incorporation of friction forces in the dynamic characteristics of the system introduces inherent nonlinearity, making its analysis challenging. Typically, numerical solutions in the time domain are employed to circumvent the complexities associated with finding analytic solutions for nonlinear systems. However, time domain analysis (TDA) can be computationally intensive and demand significant computational resources due to the intricate calculations stemming from nonlinearity. To address this computational burden, this study presents an efficient approach based on linear analysis to predict the ideal position for installing friction supports as a replacement for fixed supports. Furthermore, we investigate the relationship between the installation positions of friction supports and their effectiveness in absorbing vibrations using the harmonic balanced method (HBM). Both methodologies are validated by comparing the obtained results with those obtained through time domain analysis (TDA) using the finite element method (FEM).

키워드

과제정보

We are pleased to acknowledge support from the National Research Foundation of Korea (NRF) funded by the Korea government (MSIP) (Grant No. 2021R1A2C3010731). Also, this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1052123).

참고문헌

  1. S. Kwag, S. Eem, J. Kwak, H. Lee, J. Oh, G.H. Koo, et al., Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions, Nucl. Eng. Technol. 54 (2022) 3361-3379. https://doi.org/10.1016/j.net.2022.03.039
  2. S.W. Kim, B.G. Jeon, D.G. Hahm, M.K. Kim, Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain, Nucl. Eng. Technol. 51 (2019) 561-572. https://doi.org/10.1016/j.net.2018.10.006
  3. S.H. Lee, S.M. Ryu, W.B. Jeong, Vibration analysis of compressor piping system with fluid pulsation, J. Mech. Sci. Technol. 26 (2012) 3903-3909. https://doi.org/10.1007/s12206-012-0891-8
  4. S.G. Luca, F. Chira, V.O. Rosca, Passive, active and semi-active control systems in civil engineering, Bulletin of the Polytechnic institute of Jassy, Constructil Arhitectura Section 3-4 (2005) 23-31.
  5. J.P. Den Hartog, Mechanical Vibration, fourth ed., McGraw-Hill, New York, 1956.
  6. H.C. Tsai, G.C. Lin, Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems, Earthq. Eng. Struct. Dynam. 22 (1993) 957-973. https://doi.org/10.1002/eqe.4290221104
  7. G.B. Song, P. Zhang, L.Y. Li, M. Singla, D. Patil, H.N. Li, et al., Vibration control of a pipeline structure using pounding tuned mass damper, J. Eng. Mech. 142 (2016).
  8. S. Kwag, S. Eem, J. Kwak, H. Lee, J. Oh, G.H. Koo, Mitigation of seismic responses of actual nuclear piping by a newly developed tuned Mass Damper Device, Nucl. Eng. Technol. 53 (2021) 2728-2745. https://doi.org/10.1016/j.net.2021.02.009
  9. C.C. Chang, T.Y. Yang, Henry. Control of buildings using active tuned mass dampers, J. Eng. Mech. 121 (1995) 355-356. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:3(355)
  10. A. Yanik, U. Aldemir, M. Bakioglu, A new active control performance index for vibration control of three-dimensional structures, Eng. Struct. 62 (2014) 53-64. https://doi.org/10.1016/j.engstruct.2014.01.009
  11. M.L. Brodersen, A.S. Bjorke, J. Hogsberg, Active tuned mass damper for damping of offshore wind turbine vibrations, Wind Energy 20 (2016) 783-796. https://doi.org/10.1002/we.2063
  12. T. Kobori, M. Takahashi, T. Nasu, N. Niwa, K. Ogasawara, Seismic response controlled structure with active variable stiffness system, Earthq. Eng. Struct. Dynam. 22 (1993) 925-941. https://doi.org/10.1002/eqe.4290221102
  13. Z. Akbay, H.M. Aktan, Abating earthquake effects on buildings by active slip brace devices, Shock Vib. 2 (1995) 133-142. https://doi.org/10.1155/1995/743430
  14. M.Q. Feng, M. Shinozuka, S. Fuji, M. Shinozuka, M. Shinozuka, Experimental and Analytical Study of a Hybrid Isolation System Using Friction Controllable Sliding Bearings, National Center for Earthquake Engineering Research, Buffalo, NY, 1992.
  15. M.Q. Feng, M. Shinozuka, S. Fujii, Friction-controllable sliding isolation system, J. Eng. Mech. 119 (1993) 1845-1864. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:9(1845)
  16. A. Preumont, B. de Marneffe, A. Deraemaeker, F. Bossens, The damping of a truss structure with a piezoelectric transducer, Comput. Struct. 86 (2008) 227-239. https://doi.org/10.1016/j.compstruc.2007.01.038
  17. C.W. Stammers, T. Sireteanu, Vibration control of machines by use of semi-active dry friction damping, J. Sound Vib. 209 (1998) 671-684, https://doi.org/10.1006/jsvi.1997.1289.
  18. A.V. Bhaskararao, R.S. Jangid, Harmonic response of adjacent structures connected with a friction damper, J. Sound Vib. 292 (2006) 710-725, https://doi.org/10.1016/j.jsv.2005.08.029.
  19. H. Kobayashi, M. Yoshida, Y. Ochi, Dynamic response of piping system on rack structure with gaps and frictions, Nucl. Eng. Des. 111 (1989) 341-350. https://doi.org/10.1016/0029-5493(89)90244-6
  20. K. Suzuki, T. Watanabe, T. Mitsumori, N. Shimizu, H. Kobayashi, N. Ogawa, Experimental study on seismic responses of piping systems with friction-part 1: large-scale shaking table vibration test, J. Pressure Vessel Technol. 117 (1995) 245-249. https://doi.org/10.1115/1.2842118
  21. H. Kobayashi, R. Yokoi, T. Chiba, K. Suzuki, N. Shimizu, C. Minowa, Experimental study on seismic responses of piping systems with friction-part 2: simplified analysis method on the effect of friction, J. Pressure Vessel Technol. 117 (1995) 250-255. https://doi.org/10.1115/1.2842119
  22. S.V. Bakre, R.S. Jangid, G.R. Reddy, Seismic response of piping system with isolation devices, in: 13th World Conf. Earthquake Engineering, Vancover, Canada, August 1-6, 2004.
  23. S.V. Bakre, R.S. Jangid, G.R. Reddy, Response of piping system on friction support to bi-directional excitation, Nucl. Eng. Des. 237 (2007) 124-136. https://doi.org/10.1016/j.nucengdes.2005.12.012
  24. A. Sone, K. Tsuchikawa, T. Yamauchi, A. Masuda, Seismic response analysis of multiple supported piping system considering friction characteristics of support, in: Pressure Vessels and Piping Conference, Baltimore, Maryland, USA, July 17-21, 2011.
  25. Shankarachar Sutal, Radhakrishna Madabhushi, P. Babu, Finite element analysis of piping vibration with guided supports, International Journal of Mechanical Engineering and Automation 3 (2016) 96-106.
  26. Tatiana B. Mironova, Andrey B. Prokofiev, Victor Y. Sverbilov, The finite element technique for modelling of pipe system vibroacoustical characteristics, Procedia Eng. 176 (2017) 681-688, https://doi.org/10.1016/j.proeng.2017.02.313. ISSN 1877-7058.
  27. N.S.V.K. Rao, P.K. Singh, Finite element analysis of flow induced vibrations of pipes on elastic foundations, in: S.N. Atluri, G. Yagawa (Eds.), Computational Mechanics '88, Springer, Berlin, Heidelberg, 1988, https://doi.org/10.1007/978-3-642-61381-4_215.
  28. F. Albertson, J. Gilbert, Harmonic balance method used for calculating the steady state oscillations of a simple one-cylinder cold engine, J. Sound Vib. 241 (4) (2001) 541-565, https://doi.org/10.1006/jsvi.2000.3315. ISSN 0022-460X.
  29. Minvydas Ragulskis, A. Fedaravicius, K. Ragulskis, Harmonic balance method for FEM analysis of fluid flow in a vibrating pipe, Commun. Numer. Methods Eng. 22 (2005) 347-356, https://doi.org/10.1002/cnm.816.
  30. M. Ragulskis, A. Fedaravicius, K. Ragulskis, Harmonic balance method for FEM analysis of fluid flow in a vibrating pipe, Commun. Numer. Methods Eng. 22 (2006) 347-356, https://doi.org/10.1002/cnm.816.
  31. N. Shimuzu, K. Suzuki, T. Watanabe, N. Ogawa, H. Kobayashi, Large scale shaking table test on modal responses of 3D piping system with friction support, in: Pressure Vessels and Piping Conference, Montreal, Canada, July 21-26, 1996.
  32. G.R. Reddy, K. Suzuki, T. Watanabe, S.C. Mahajan, Linearization techniques for seismic analysis of piping system on friction support, J. Press. Vessel Tchnol. 121 (1999) 103-108. https://doi.org/10.1115/1.2883656
  33. S. Baek, B. Epureanu, Reduced-order modeling of bladed disks with friction ring dampers, ASME. J. Vib. Acoust 139 (6) (August 2, 2017), 061011. December 2017.
  34. Robert L. Weber, Marsh W. White, Kenneth V. Manning, College Physics, McGraw-Hill Book Company, Inc., New York, 1952, p. 820.
  35. Y.H. Jang, J.R. Barber, Effect of phase on the frictional dissipation in systems subjected to harmonically varying loads, Eur. J. Mech. Solid. 30 (3) (2011) 269-274. https://doi.org/10.1016/j.euromechsol.2011.01.008
  36. M. Paggi, R. Pohrt, V. Popov, Partial-slip frictional response of rough surfaces, Sci. Rep. 4 (2014) 5178.