DOI QR코드

DOI QR Code

Effect of inlet throttling on thermohydraulic instability in a large scale water-based RCCS: A system-level analysis with RELAP5-3D

  • 투고 : 2023.07.11
  • 심사 : 2023.12.27
  • 발행 : 2024.05.25

초록

This paper presents results from system-level modeling of a water-based reactor cavity cooling system using RELAP5-3D. The computational model is benchmarked with experimental data from a half-scale RCCS test facility at Argonne National Laboratory. The model prediction is first compared with a two-phase oscillatory baseline experimental case where mixed accuracy is obtained. The model shows reasonable prediction of mass flow rate, pressure, and temperature but significant overprediction of void fraction. The model prediction is then compared with a fault case where the inlet of the risers is gradually reduced using a throttling valve. As the valve is closed, the model is able to predict some major flow phenomena observed in the experiment such as the dampening of oscillations, the reintroduction of oscillations, as well as boiling, flashing, and geysering in the risers. However, the timeline of these events are not well captured by the model. The model is also used to investigate the evolution of flow regime in the chimney. This work highlights that the semi-empirical constitutive relations used in RELAP-3D could have a strong influence on the accuracy of the model in two-phase oscillatory flows.

키워드

과제정보

This work is supported by the U.S. Department of Energy, Office of Nuclear Energy, Office of Nuclear Reactor Technologies, Advanced Reactor Technologies. The submitted manuscript has been created by UChicago Argonne LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.

참고문헌

  1. C. Wang, Y. Liu, X. Sun, P. Sabharwall, A hybrid porous model for full reactor core scale CFD investigation of a prismatic HTGR, Ann. Nucl. Energy 151 (2021) 107916.
  2. D. Lisowski, C. Gerardi, D. Kilsdonk, N. Bremer, S. Lomperski, R. Hu, A.R. Kraus, M. Bucknor, Q. Lv, T. Lee, et al., Final project report on RCCS testing with air-based NSTF, Tech. Rep. ANL-ART-47, Argonne National Laboratory, 2016.
  3. K. Fukuda, T. Kobori, Classification of two-phase flow instability by density wave oscillation model, J. Nucl. Sci. Technol. 16 (2) (1979) 95-108. https://doi.org/10.1080/18811248.1979.9730878
  4. D. Lisowski, O. Omotowa, M. Muci, A. Tokuhiro, M. Anderson, M. Corradini, Influences of boil-off on the behavior of a two-phase natural circulation loop, Int. J. Multiphase Flow 60 (2014) 135-148. https://doi.org/10.1016/j.ijmultiphaseflow.2013.12.005
  5. Y. Zhao, M. Peng, Y. Xu, G. Xia, Simulation investigation on flashing-induced instabilities in a natural circulation system, Ann. Nucl. Energy 144 (2020) 107561.
  6. M. Furuya, F. Inada, T. Van der Hagen, Flashing-induced density wave oscillations in a natural circulation BWR-mechanism of instability and stability map, Nucl. Eng. Des. 235 (15) (2005) 1557-1569. https://doi.org/10.1016/j.nucengdes.2005.01.006
  7. J.H. Chiang, M. Aritomi, M. Mori, M. Higuchi, Fundamental study on thermo-hydraulics during start-up in natural circulation boiling water reactors,(III) effects of system pressure on geysering and natural circulation oscillation, J. Nucl. Sci. Technol. 31 (9) (1994) 883-893. https://doi.org/10.1080/18811248.1994.9735239
  8. C.P. Marcel, M. Rohde, T. Van Der Hagen, Experimental and numerical investigations on flashing-induced instabilities in a single channel, Exp. Therm. Fluid Sci. 33 (8) (2009) 1197-1208. https://doi.org/10.1016/j.expthermflusci.2009.08.001
  9. C.P. Marcel, M. Rohde, T.H. Van Der Hagen, Experimental investigations on flashing-induced instabilities in one and two-parallel channels: A comparative study, Exp. Therm Fluid Sci. 34 (7) (2010) 879-892. https://doi.org/10.1016/j.expthermflusci.2010.02.002
  10. T. Zhang, C.S. Brooks, Linear stability analysis of flashing instability based on the homogeneous equilibrium model, Nucl. Eng. Des. 373 (2021) 110994.
  11. L.C. Ruspini, C.P. Marcel, A. Clausse, Two-phase flow instabilities: A review, Int. J. Heat Mass Transfer 71 (2014) 521-548. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.047
  12. S. Shi, Q. Zhu, X. Sun, M. Ishii, Assessment of RELAP5/MOD3. 2 for startup transients in a natural circulation test facility, Ann. Nucl. Energy 112 (2018) 257-266. https://doi.org/10.1016/j.anucene.2017.10.012
  13. M.L. De Bertodano, W. Fullmer, A. Clausse, V.H. Ransom, Two-Fluid Model Stability, Simulation and Chaos, Springer, 2017.
  14. Q. Wang, P. Gao, X. Chen, Z. Wang, Y. Huang, An investigation on flashing-induced natural circulation instabilities based on RELAP5 code, Ann. Nucl. Energy 121 (2018) 210-222. https://doi.org/10.1016/j.anucene.2018.07.035
  15. C. Teng, H. Xie, H. Jia, Assessment of RELAP5/MOD3. 2 for simulating density wave oscillation with a two-phase natural circulation test facility, Nucl. Eng. Des. 381 (2021) 111358.
  16. S. Lomperski, W. Pointer, C. Tzanos, T. Wei, A. Kraus, Generation IV nuclear energy system initiative; air-cooled option RCCS studies and NSTF preparation, http://dx.doi.org/10.2172/1055416, URL https://www.osti.gov/biblio/1055416.
  17. M. Corradini, M. Anderson, Y. Hassan, A. Tokuhiro, Experimental Studies of NGNP Reactor Cavity Cooling System With Water, http://dx.doi.org/10.2172/1063993, URL https://www.osti.gov/biblio/1063993.
  18. R. Vaghetto, Y. Hassan, Modeling the thermal-hydraulic behavior of the reactor cavity cooling system using RELAP5-3D, Ann. Nucl. Energy 73 (2014) 75-83. https://doi.org/10.1016/j.anucene.2014.06.026
  19. Q. Lv, A. Kraus, Z. Ooi, R. Hu, D. Lisowski, FY21 progress on computational modeling of the water-based NSTF, Tech. Rep. ANL-ART-235, Argonne National Laboratory, 2021.
  20. D. Lisowski, C. Gerardi, R. Hu, D. Kilsdonk, N. Bremer, A. Kraus, M. Bucknor, S. Lomperski, M. Farmer, Water NSTF design, instrumentation, and test planning, Tech. Rep. ANL-ART-98, Argonne National Laboratory, 2017.
  21. D. Lisowski, Q. Lv, R. Hu, A. Kraus, N. Bremer, D. Kilsdonk, M. Farmer, RCCS testing with the water-based NSTF: Year-1 single-phase results, Tech. Rep. ANL-ART-175, Argonne National Laboratory, 2019.
  22. D. Lisowski, Q. Lv, N. Bremer, R. Hu, A. Kraus, D. Kilsdonk, S. Lomperski, M. Farmer, Report on year-2 of water NSTF matrix testing: Two-phase baseline and repeatability, Tech. Rep. ANL-ART-206, Argonne National Laboratory, 2020.
  23. Q. Lv, M. Jasica, D. Lisowski, M. Farmer, Report on year-3 of water NSTF matrix testing: Two-phase parametric test series, Tech. Rep. ANL-ART-230, Argonne National Laboratory, 2021.
  24. RELAP5, RELAP5-3D code manual volume IV: Models and correlations, Tech. Rep. INL/MIS-15-36723, Idaho National Laboratory, 2015.
  25. Q. Lv, A. Kraus, R. Hu, M. Bucknor, D. Lisowski, D. Bremer, Progress report on computational analyses of water-based NSTF, Tech. Rep. ANL-ART-103, Argonne National Laboratory, 2017.
  26. Z. Ooi, Q. Lv, R. Hu, D. Lisowski, Modeling of a Large Scale RCCS Operating at Two-Phase Transient Conditions with RELAP5-3D, 2022 ANS Winter Meeting and Technological Expo, 2022.
  27. Z. Ooi, Q. Lv, R. Hu, M. Jasica, D. Lisowski, FY22 progress on computational modeling of the water-based NSTF, Tech. Rep. ANL-ART-257, Argonne National Laboratory, 2022, http://dx.doi.org/10.2172/1888758, URL https://www.osti.gov/biblio/1888758.
  28. M.S. Plesset, S.A. Zwick, The growth of vapor bubbles in superheated liquids, J. Appl. Phys. 25 (4) (1954) 493-500. https://doi.org/10.1063/1.1721668
  29. K. Lee, D. Ryley, The evaporation of water droplets in superheated steam, J. Heat Transfer 90 (4) (1968) 445-451. https://doi.org/10.1115/1.3597540
  30. W. Fullmer, V. Kumar, C. Brooks, Validation of RELAP5/MOD3.3 for subcooled boiling, flashing and condensation in a vertical annulus, Prog. Nucl. Energy 93 (2016) 205-217. https://doi.org/10.1016/j.pnucene.2016.08.013
  31. Z. Ooi, V. Kumar, C. Brooks, Validation of the interfacial area transport equation coupled with the void transport equation for prediction of flashing flows, Nucl. Sci. Eng. 194 (8-9) (2020) 598-619. https://doi.org/10.1080/00295639.2020.1732123
  32. Z. Ooi, C. Brooks, Two-group interfacial area transport equation coupled with void transport equation in adiabatic steam water flows, Int. J. Heat Mass Transfer 177 (2021) 121531.
  33. A. Mangal, V. Jain, A. Nayak, Capability of the RELAP5 code to simulate natural circulation behavior in test facilities, Prog. Nucl. Energy 61 (2012) 1-16. https://doi.org/10.1016/j.pnucene.2012.06.005
  34. Q. Lv, M. Jasica, R. Hu, Z.J. Ooi, M. Farmer, D. Lisowski, FY23 report on water NSTF testing at two-phase conditions: Off-normal scenarios, Tech. Rep. ANL-ART-274, Argonne National Laboratory (ANL), Argonne, IL (United States), 2023.
  35. M. Furuya, F. Inada, A. Yasuo, Inlet throttling effect on the boiling two-phase flow stability in a natural circulation loop with a chimney, Heat Mass Transf. 37 (2-3) (2001) 111-115. https://doi.org/10.1007/s002310000127