DOI QR코드

DOI QR Code

A novel monitoring system for fatigue crack length of compact tensile specimen in liquid lead-bismuth eutectic

  • Baoquan Xue (CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences) ;
  • Jibo Tan (CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences) ;
  • Xinqiang Wu (CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences) ;
  • Ziyu Zhang (CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences) ;
  • Xiang Wang (CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences)
  • Received : 2023.04.25
  • Accepted : 2023.12.25
  • Published : 2024.05.25

Abstract

Fatigue strength of the structural materials of lead-cooled fast reactors (LFRs) and accelerator-driven systems (ADS) may be degraded in liquid metal (Lead or lead-bismuth eutectic (LBE)) environments. The fatigue crack growth (FCG) data of structural materials in liquid LBE are necessary for damage tolerance design, safety assessment and life management of key equipment. A novel monitoring system for fatigue crack length was designed on the compliance method and the monitor technology of crack opening displacement (COD) of CT specimens by the linear variable differential transformers (LVDT) system. It can be used to predict the crack length by monitoring the COD of CT specimens in harsh high-temperature liquid LBE using a LVDT system. The prediction accuracy of this system was verified by FCG experiments in room temperature air and liquid LBE at 150, 250 and 350 ℃. The first results obtained in the FCG test for T91 steel in liquid LBE at 350 ℃ are presented.

Keywords

Acknowledgement

This study was jointly supported by the National Natural Science Foundation of China, China (No. 52271077), Youth Innovation Promotion Association CAS, China (2021189) and IMR Innovation Fund, China (2021-PY01).

References

  1. E.D. Shchukin, V.I. Savenko, Analysis of liquid metal embrittlement in materials, Mendeleev Commun. 29 (2019) 716-717. https://doi.org/10.1016/j.mencom.2019.11.040
  2. S. Bassini, S. Cataldo, C. Cristalli, A. Fiore, C. Sartorio, M. Tarantino, M. Utili, Material performance in lead and lead-bismuth alloy, Comprehensive Nuclear Materials (2020) 218-241.
  3. P.K. Nema, Application of accelerators for nuclear systems: accelerator driven system (ADS), Energy Proc. 7 (2011) 597-608. https://doi.org/10.1016/j.egypro.2011.06.080
  4. A. Alemberti, V. Smirnov, C.F. Smith, M. Takahashi, Overview of lead-cooled fast reactor activities, Prog. Nucl. Energy 77 (2014) 300-307. https://doi.org/10.1016/j.pnucene.2013.11.011
  5. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2015 Edition (NEA-7268). Nuclear Energy Agency of the OECD (NEA).
  6. G.N.A. Legris, J.-B. Vogt, J. Foct, Liquid metal embrittlement of the martensitic steel 91: influence of the chemical composition of the liquid metal.: experiments and electronic structure calculations, J. Nucl. Mater. 301 (2002) 70-76. https://doi.org/10.1016/S0022-3115(01)00730-9
  7. B. Long, Z. Tong, F. Groschel, Y. Dai, Liquid Pb-Bi embrittlement effects on the T91 steel after different heat treatments, J. Nucl. Mater. 377 (2008) 219-224. https://doi.org/10.1016/j.jnucmat.2008.02.050
  8. T. Auger, G. Lorang, S. Gu'erin, J.L. Pastol, D. Gorse, Effect of contact conditions on embrittlement of T91 steel by lead-bismuth, J. Nucl. Mater. 335 (2004) 227-231. https://doi.org/10.1016/j.jnucmat.2004.07.025
  9. S. Bassini, S. Cataldo, C. Cristalli, A. Fiore, C. Sartorio, M. Tarantino, M. Utili, Material performance in lead and lead-bismuth alloy, Comprehensive Nuclear Materials (2020) 218-241.
  10. H. Wang, X. Gong, J. Xiao, L. Chai, Z. Yu, H. Chen, K. Zhao, J. Zhou, G. Liu, Y. Chen, S. Qiu, Liquid metal embrittlement of 12Cr ferritic/martensitic steel thin-walled tubes exposed to liquid lead-bismuth eutectic, Corrosion Sci. 195 (2022), 110024.
  11. C.F. Old, Liquid metal embrittlement of nuclear materials, J. Nucl. Mater. 92 (1980) 2-25. https://doi.org/10.1016/0022-3115(80)90136-1
  12. X. Gong, M.P. Short, T. Auger, E. Charalampopoulou, K. Lambrinou, Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors, Prog. Mater. Sci. 126 (2022), 100920.
  13. J.-B. Vogt, J. Bouquerel, C. Carle, I. Proriol Serre, Stability of fatigue cracks at 350 ℃ in air and in liquid metal in T91 martensitic steel, Int. J. Fatig. 130 (2020), 105265.
  14. H.P. Seifert, S. Ritter, H.J. Leber, Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions, Corrosion Sci. 55 (2012) 61-75. https://doi.org/10.1016/j.corsci.2011.10.005
  15. J.A. Duff, T.J. Marrow, In situ observation of short fatigue crack propagation in oxygenated water at elevated temperature and pressure, Corrosion Sci. 68 (2013) 34-43. https://doi.org/10.1016/j.corsci.2012.10.030
  16. M. Chocholousek, E. Stergar, X. Gong, P. Marmy, S. Gavrilov, F. Ersoy, et al., Mechanical/microstructural characteristics of environmentally-assisted degradation effects of steels in lead alloys and assessment of environmental degradation effects on performance of structural and functional components of MYRRHA ADS & LFR, MatISSE - D5.42 (2017).
  17. A. Hojna, F. Di Gabriele, On the kinetics of LME for the ferritic-martensitic steel T91 immersed in liquid PbBi eutectic, J. Nucl. Mater. 413 (2011) 21-29. https://doi.org/10.1016/j.jnucmat.2011.03.044
  18. C. Ye, J.-B. Vogt, I. Proriol-Serre, Brittle fracture of T91 steel in liquid lead-bismuth eutectic alloy, Nucl. Eng. Des. 280 (2014) 680-685. https://doi.org/10.1016/j.nucengdes.2014.04.044
  19. J. Van den Bosch, G. Coen, A. Almazouzi, J. Degrieck, Fracture toughness assessment of ferritic-martensitic steel in liquid lead-bismuth eutectic, J. Nucl. Mater. 385 (2) (2009) 250-257. https://doi.org/10.1016/j.jnucmat.2008.11.024
  20. F. Ersoy, S. Gavrilov, K. Verbeken, Investigating liquid-metal embrittlement of T91 steel by fracture toughness tests, J. Nucl. Mater. 472 (2016) 171-177. https://doi.org/10.1016/j.jnucmat.2015.12.019
  21. B. Xue, J. Tan, Z. Zhang, X. Wang, X. Wu, E.-H. Han, W. Ke, Effect of temperature on low cycle fatigue behavior of T91 steel in liquid lead-bismuth eutectic environment at 150-550℃, Int. J. Fatig. 167 (2023), 107344.
  22. J. Ashok Saxena, S.J. Hudak, Review and extension of compliance information for common crack growth specimens, Int. J. Fract. 14 (1978) 453-468. https://doi.org/10.1007/BF01390468
  23. Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM E399, 1997.
  24. Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM E647, 2008.
  25. X. Gong, P. Marmy, B. Verlinden, M. Wevers, M. Seefeldt, Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead-bismuth eutectic at 350℃ - effects of oxygen concentration in the liquid metal and strain rate, Corrosion Sci. 94 (2015) 377-391. https://doi.org/10.1016/j.corsci.2015.02.022
  26. A. Verleene, Fatigue behavior of martensitic steel T91 at 300℃ in liquid lead-bismuth eutectic. Mechanics [physics.Med-Ph], University of Sciences and Technology of Lille Lille I, French, 2005.