Acknowledgement
This study was jointly supported by the National Natural Science Foundation of China, China (No. 52271077), Youth Innovation Promotion Association CAS, China (2021189) and IMR Innovation Fund, China (2021-PY01).
References
- E.D. Shchukin, V.I. Savenko, Analysis of liquid metal embrittlement in materials, Mendeleev Commun. 29 (2019) 716-717. https://doi.org/10.1016/j.mencom.2019.11.040
- S. Bassini, S. Cataldo, C. Cristalli, A. Fiore, C. Sartorio, M. Tarantino, M. Utili, Material performance in lead and lead-bismuth alloy, Comprehensive Nuclear Materials (2020) 218-241.
- P.K. Nema, Application of accelerators for nuclear systems: accelerator driven system (ADS), Energy Proc. 7 (2011) 597-608. https://doi.org/10.1016/j.egypro.2011.06.080
- A. Alemberti, V. Smirnov, C.F. Smith, M. Takahashi, Overview of lead-cooled fast reactor activities, Prog. Nucl. Energy 77 (2014) 300-307. https://doi.org/10.1016/j.pnucene.2013.11.011
- Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2015 Edition (NEA-7268). Nuclear Energy Agency of the OECD (NEA).
- G.N.A. Legris, J.-B. Vogt, J. Foct, Liquid metal embrittlement of the martensitic steel 91: influence of the chemical composition of the liquid metal.: experiments and electronic structure calculations, J. Nucl. Mater. 301 (2002) 70-76. https://doi.org/10.1016/S0022-3115(01)00730-9
- B. Long, Z. Tong, F. Groschel, Y. Dai, Liquid Pb-Bi embrittlement effects on the T91 steel after different heat treatments, J. Nucl. Mater. 377 (2008) 219-224. https://doi.org/10.1016/j.jnucmat.2008.02.050
- T. Auger, G. Lorang, S. Gu'erin, J.L. Pastol, D. Gorse, Effect of contact conditions on embrittlement of T91 steel by lead-bismuth, J. Nucl. Mater. 335 (2004) 227-231. https://doi.org/10.1016/j.jnucmat.2004.07.025
- S. Bassini, S. Cataldo, C. Cristalli, A. Fiore, C. Sartorio, M. Tarantino, M. Utili, Material performance in lead and lead-bismuth alloy, Comprehensive Nuclear Materials (2020) 218-241.
- H. Wang, X. Gong, J. Xiao, L. Chai, Z. Yu, H. Chen, K. Zhao, J. Zhou, G. Liu, Y. Chen, S. Qiu, Liquid metal embrittlement of 12Cr ferritic/martensitic steel thin-walled tubes exposed to liquid lead-bismuth eutectic, Corrosion Sci. 195 (2022), 110024.
- C.F. Old, Liquid metal embrittlement of nuclear materials, J. Nucl. Mater. 92 (1980) 2-25. https://doi.org/10.1016/0022-3115(80)90136-1
- X. Gong, M.P. Short, T. Auger, E. Charalampopoulou, K. Lambrinou, Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors, Prog. Mater. Sci. 126 (2022), 100920.
- J.-B. Vogt, J. Bouquerel, C. Carle, I. Proriol Serre, Stability of fatigue cracks at 350 ℃ in air and in liquid metal in T91 martensitic steel, Int. J. Fatig. 130 (2020), 105265.
- H.P. Seifert, S. Ritter, H.J. Leber, Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions, Corrosion Sci. 55 (2012) 61-75. https://doi.org/10.1016/j.corsci.2011.10.005
- J.A. Duff, T.J. Marrow, In situ observation of short fatigue crack propagation in oxygenated water at elevated temperature and pressure, Corrosion Sci. 68 (2013) 34-43. https://doi.org/10.1016/j.corsci.2012.10.030
- M. Chocholousek, E. Stergar, X. Gong, P. Marmy, S. Gavrilov, F. Ersoy, et al., Mechanical/microstructural characteristics of environmentally-assisted degradation effects of steels in lead alloys and assessment of environmental degradation effects on performance of structural and functional components of MYRRHA ADS & LFR, MatISSE - D5.42 (2017).
- A. Hojna, F. Di Gabriele, On the kinetics of LME for the ferritic-martensitic steel T91 immersed in liquid PbBi eutectic, J. Nucl. Mater. 413 (2011) 21-29. https://doi.org/10.1016/j.jnucmat.2011.03.044
- C. Ye, J.-B. Vogt, I. Proriol-Serre, Brittle fracture of T91 steel in liquid lead-bismuth eutectic alloy, Nucl. Eng. Des. 280 (2014) 680-685. https://doi.org/10.1016/j.nucengdes.2014.04.044
- J. Van den Bosch, G. Coen, A. Almazouzi, J. Degrieck, Fracture toughness assessment of ferritic-martensitic steel in liquid lead-bismuth eutectic, J. Nucl. Mater. 385 (2) (2009) 250-257. https://doi.org/10.1016/j.jnucmat.2008.11.024
- F. Ersoy, S. Gavrilov, K. Verbeken, Investigating liquid-metal embrittlement of T91 steel by fracture toughness tests, J. Nucl. Mater. 472 (2016) 171-177. https://doi.org/10.1016/j.jnucmat.2015.12.019
- B. Xue, J. Tan, Z. Zhang, X. Wang, X. Wu, E.-H. Han, W. Ke, Effect of temperature on low cycle fatigue behavior of T91 steel in liquid lead-bismuth eutectic environment at 150-550℃, Int. J. Fatig. 167 (2023), 107344.
- J. Ashok Saxena, S.J. Hudak, Review and extension of compliance information for common crack growth specimens, Int. J. Fract. 14 (1978) 453-468. https://doi.org/10.1007/BF01390468
- Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM E399, 1997.
- Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM E647, 2008.
- X. Gong, P. Marmy, B. Verlinden, M. Wevers, M. Seefeldt, Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead-bismuth eutectic at 350℃ - effects of oxygen concentration in the liquid metal and strain rate, Corrosion Sci. 94 (2015) 377-391. https://doi.org/10.1016/j.corsci.2015.02.022
- A. Verleene, Fatigue behavior of martensitic steel T91 at 300℃ in liquid lead-bismuth eutectic. Mechanics [physics.Med-Ph], University of Sciences and Technology of Lille Lille I, French, 2005.