DOI QR코드

DOI QR Code

Hyphae and organic acids of Aspergillus Niger promote uranium recovery by destroying the ore surface and increasing the porosity and permeability of ores

  • Yongdong Wang (Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China) ;
  • Jinhua Wang (Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China) ;
  • Dexin Ding (Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China) ;
  • Guangyue Li (Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China) ;
  • Jing Sun (Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China) ;
  • Nan Hu (Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China) ;
  • Feng Li (Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China) ;
  • Jianhong Ma (Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China) ;
  • Hui Zhang (Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China) ;
  • Yang Ding (Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China) ;
  • Zhongran Dai (Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China)
  • Received : 2023.08.28
  • Accepted : 2023.12.24
  • Published : 2024.05.25

Abstract

To elucidate the mechanism of damage caused by hyphae and organic acids produced by Aspergillus Niger on the surface and internal structure of uranium ore, direct uranium leaching, indirect uranium leaching and semidirect uranium leaching were conducted, and the surface morphology, strength, mineral crystallinity, porosity, and permeability of the ore were analyzed. The results demonstrated that the combination of biomechanical forces exerted by hyphae and the complexation effects of organic acids led to the dissolution of SiO2 and other substances on the surface of ore, resulting in exfoliation from the exterior to the interior, thereby promoting uranium recovery. Furthermore, the proton exchange involving H+ and the complexation of organic acids resulted in the dissolution of cations within the ore, causing destruction to the crystal lattice structure of minerals and increasing the porosity and permeability inside the ore. The dominant factor contributing to ore damage during recovery was organic acids.

Keywords

Acknowledgement

This work was supported by the Natural Science Foundation of Hunan Province, China [grant number 2022JJ30491]; the Research Foundation of Education Bureau of Hunan Province, China [grant number 22A0308]; and the National Natural Science Foundation of China [grant number 11505093].

References

  1. NEA/IAEA, Uranium 2020: Resources, Production and Demand, IAEA Publishing, Vienna, 2021, https://doi.org/10.1787/d82388ab-en.
  2. H. Abdollahi, R. Saneie, S.Z. Shafaei, M. Mirmohammadi, A. Mohammadzadeh, O. H. Tuovinen, Bioleaching of cobalt from magnetite-rich cobaltite-bearing ore, Hydrometallurgy 204 (2021), 105727, https://doi.org/10.1016/j.hydromet.2021.105727.
  3. J.Y. Li, J.X. Wen, Y. Guo, N. An, C.J. Liang, Z.Y. Ge, Bioleaching of gold from waste printed circuit boards by alkali-tolerant Pseudomonas fluorescens, Hydrometallurgy 194 (2020), 105260, https://doi.org/10.1016/j.hydromet.2020.105260.
  4. F.L. Martins, V.A. Leao, Chalcopyrite bioleaching in chloride media: a mini-review, Hydrometallurgy 216 (2022), 105995, https://doi.org/10.1016/j.hydromet.2022.105995.
  5. R. Nkuna, G.N. Ijoma, T.S. Matambo, N. Chimwani, Accessing metals from low-grade ores and the environmental impact considerations: a review of the perspectives of conventional versus bioleaching strategies, Minerals 12 (5) (2022) 506, https://doi.org/10.3390/min12050506.
  6. A. Yachkula, O. Rozova, T. Abashina, M. Vainshtein, D. Grouzdev, A. Bulaev, Attempts to stimulate leaching activity of Acidithiobacillus ferrooxidans strain TFBk, Minerals 12 (8) (2022) 1051, https://doi.org/10.3390/min12081051.
  7. A.H. Kaksonen, A.M. Lakaniemi, O.H. Tuovinen, Acid and ferric sulfate bioleaching of uranium ores: a review, J. Clean. Prod. 264 (2020), 121586, https://doi.org/10.1016/j.jclepro.2020.121586.
  8. D.E. Lazo, L.G. Dyer, R.D. Alorro, R. Browner, Treatment of monazite by organic acids I: solution conversion of rare earths, Hydrometallurgy 174 (2017) 202-209, https://doi.org/10.1016/j.hydromet.2017.10.003.
  9. Y.D. Wang, G.Y. Li, D.X. Ding, Z.X. Zhou, Q.W. Deng, N. Hu, Y. Tan, Uranium leaching using mixed organic acids produced by Aspergillus niger, J. Radioanal. Nucl. Chem. 298 (2) (2013) 769-773, https://doi.org/10.1007/s10967-013-2664-y.
  10. S. Kimuro, A. Kirishima, Y. Kitatsuji, K. Miyakawa, D. Akiyama, N. Sato, Thermodynamic study of the complexation of humic acid by calorimetry, J. Chem. Therm. 132 (2019) 352-362, https://doi.org/10.1016/j.jct.2019.01.011.
  11. X.D. Li, B. Wu, Q. Zhang, Y.Q. Liu, J.Q. Wang, F.S. Li, F.J. Ma, Q.B. Gu, Complexation of humic acid with Fe ions upon persulfate/ferrous oxidation: further insight from spectral analysis, J. Hazard Mater. 399 (2020), 123071, https://doi.org/10.1016/j.jhazmat.2020.123071.
  12. X.L. Sun, X.S. Ma, L. Leng, Y.C. Fang, Optical properties of the Suwannee river fulvic acid complexation with Thorium using 3D fluorescence spectroscopy, Spectroscopy 37 (8) (2022) 26-33, https://doi.org/10.56530/spectroscopy.xl4975e8.
  13. H.S. Xu, G.Q. Gong, Y.J. Zhang, F. Yuan, Y.X. Zhang, The spectroscopic characteristics of fulvic acid complexed with copper ion and the construction of the mechanism of action, Spectrosc. Spectr. Anal. 42 (4) (2022) 1010-1016, https://doi.org/10.3964/j.issn.1000-0593(2022)04-1010-07.
  14. B. Jagetiya, A. Sharma, Optimization of chelators to enhance uranium uptake from tailings for phytoremediation, Chemosphere 91 (5) (2013) 692-696, https://doi.org/10.1016/j.chemosphere.2012.11.044.
  15. J. Sun, Q. Li, T. Li, K.L. Xu, Z. Cui, G.Y. Li, Insights into formation and dissolution mechanism of bio-ore pellets in the one-step uranium leaching process by Aspergillus niger, Miner. Eng. 184 (2022), 107672, https://doi.org/10.1016/j.mineng.2022.107672.
  16. M.M. Amin, I.E. Elaassy, M.G. El-Feky, A.S.M. Sallam, M.S. Talaat, N.A. Kawady, Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt, J. Environ. Radioact. 134 (2014) 76-82, https://doi.org/10.1016/j.jenvrad.2014.02.024.
  17. J.Q. Ma, W.Q. Wang, J. Yang, S.F. Qin, Y.S. Yang, C.Y. Sun, G. Pei, M. Zeeshan, H. L. Liao, L. Liu, J.H. Huang, Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize, BMC Plant Biol. 22 (1) (2022) 64, https://doi.org/10.1186/s12870-021-03370-2.
  18. Z.X. Shang, Z. Ye, M.Q. Li, H.B. Ren, S.B. Cai, X.S. Hu, J.J. Yi, Dynamics of microbial communities, flavor, and physicochemical properties of pickled chayote during an industrial-scale natural fermentation: correlation between microorganisms and metabolites, Food Chem. 377 (2022), 132004, https://doi.org/10.1016/j.foodchem.2021.132004.
  19. M.M. Amin, I.E. Elaassy, M.G. El-Feky, N.A. Kawady, M.S. Talaat, A.S.M. Sallam, Recovery of uranium from low-grade ore using microorganism isolated from uraniferous rock sample, Separ. Sci. Technol. 53 (14) (2018) 2232-2237, https://doi.org/10.1080/01496395.2018.1437182.
  20. K.X. Wang, J.S. Chen, Extended structures and physicochemical properties of uranyl-organic compounds, Accounts Chem. Res. 44 (7) (2011) 531-540, https://doi.org/10.1021/ar200042t.
  21. N. Zhang, Y.H. Xing, F.Y. Bai, Triazine functionalized porous three-dimensional uranyl-organic framework: extraction of uranium (VI) and adsorption of cationic dyes in aqueous solution, Cryst. Growth Des. 20 (3) (2020) 1838-1848, https://doi.org/10.1021/acs.cgd.9b01553.
  22. Z. Wei, M. Kierans, G.M. Gadd, A model sheet mineral system to study fungal bioweathering of mica, Geomicrobiol. J. 29 (4) (2012) 323-331, https://doi.org/10.1080/01490451.2011.558567.
  23. Z.B. Li, L.W. Liu, X.C. Lu, L. Zhao, J.F. Ji, J. Chen, Mineral foraging and etching by the fungus Talaromyces flavus to obtain structurally bound iron, Chem. Geol. 586 (2021), 120592, https://doi.org/10.1016/j.chemgeo.2021.120592.
  24. A. Sanhueza, I.J. Ferrer, T. Vargas, R. Amils, C. S' anchez, Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties, Hydrometallurgy 51 (1) (1999) 115-129, https://doi.org/10.1016/S0304-386X(98)00079-6.
  25. A. Schippers, S. Hedrich, J. Vasters, M. Drobe, W. Sand, S. Willscher, Biomining: metal recovery from ores with microorganisms, Geobiotechnology I: Metal-related 141 (2014) 1-47, https://doi.org/10.1007/10_2013_216.
  26. M.F. Hochella Jr., There's plenty of room at the bottom: nanoscience in geochemistry, Geochem. Cosmochim. Acta 66 (5) (2002) 735-743, https://doi.org/10.1016/S0016-7037(01)00868-7.
  27. Z.B. Li, L. Liu, X. Lu, J. Ji, J. Chen, Analysis of the Talaromyces flavus exometabolome reveals the complex responses of the fungus to minerals, Geochem. Cosmochim. Acta 298 (2021) 70-86, https://doi.org/10.1016/j.gca.2021.01.036.
  28. A. Goriely, M. Tabor, Estimates of biomechanical forces in Magnaporthe grisea, Mycol. Res. 110 (7) (2006) 755-759, https://doi.org/10.1016/j.mycres.2006.03.014.
  29. R.J. Howard, M.A. Ferrari, D.H. Roach, N.P. Money, Penetration of hard substrates by a fungus employing enormous turgor pressures, Proc. Natl. Acad. Sci. USA 88 (24) (1991) 11281-11284, https://doi.org/10.1073/pnas.88.24.11281.
  30. G.M. Gadd, Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation, Mycol. Res. 111 (1) (2007) 3-49, https://doi.org/10.1016/j.mycres.2006.12.001.
  31. A.G. Newton, K.D. Kwon, Classical mechanical simulations of layer-and tunnel-structured manganese oxide minerals, Geochem. Cosmochim. Acta 291 (2020) 92-109, https://doi.org/10.1016/j.gca.2020.04.034.
  32. S.V. Golubev, A. Bauer, O.S. Pokrovsky, Effect of pH and organic ligands on the kinetics of smectite dissolution at 25 ℃, Geochem. Cosmochim. Acta 70 (17) (2006) 4436-4451, https://doi.org/10.1016/j.gca.2006.06.1557.
  33. B. Xiao, B. Lian, L.L. Sun, W.L. Shao, Gene transcription response to weathering of K-bearing minerals by Aspergillus fumigatus, Chem. Geol. 306 (2012) 1-9, https://doi.org/10.1016/j.chemgeo.2012.02.014.
  34. S. Uroz, C. Calvaruso, M.P. Turpault, P. Frey-Klett, Mineral weathering by bacteria: ecology, actors and mechanisms, Trends Microbiol. 17 (8) (2009) 378-387, https://doi.org/10.1016/j.tim.2009.05.004.