Acknowledgement
This work was supported by the Natural Science Foundation of Hunan Province, China [grant number 2022JJ30491]; the Research Foundation of Education Bureau of Hunan Province, China [grant number 22A0308]; and the National Natural Science Foundation of China [grant number 11505093].
References
- NEA/IAEA, Uranium 2020: Resources, Production and Demand, IAEA Publishing, Vienna, 2021, https://doi.org/10.1787/d82388ab-en.
- H. Abdollahi, R. Saneie, S.Z. Shafaei, M. Mirmohammadi, A. Mohammadzadeh, O. H. Tuovinen, Bioleaching of cobalt from magnetite-rich cobaltite-bearing ore, Hydrometallurgy 204 (2021), 105727, https://doi.org/10.1016/j.hydromet.2021.105727.
- J.Y. Li, J.X. Wen, Y. Guo, N. An, C.J. Liang, Z.Y. Ge, Bioleaching of gold from waste printed circuit boards by alkali-tolerant Pseudomonas fluorescens, Hydrometallurgy 194 (2020), 105260, https://doi.org/10.1016/j.hydromet.2020.105260.
- F.L. Martins, V.A. Leao, Chalcopyrite bioleaching in chloride media: a mini-review, Hydrometallurgy 216 (2022), 105995, https://doi.org/10.1016/j.hydromet.2022.105995.
- R. Nkuna, G.N. Ijoma, T.S. Matambo, N. Chimwani, Accessing metals from low-grade ores and the environmental impact considerations: a review of the perspectives of conventional versus bioleaching strategies, Minerals 12 (5) (2022) 506, https://doi.org/10.3390/min12050506.
- A. Yachkula, O. Rozova, T. Abashina, M. Vainshtein, D. Grouzdev, A. Bulaev, Attempts to stimulate leaching activity of Acidithiobacillus ferrooxidans strain TFBk, Minerals 12 (8) (2022) 1051, https://doi.org/10.3390/min12081051.
- A.H. Kaksonen, A.M. Lakaniemi, O.H. Tuovinen, Acid and ferric sulfate bioleaching of uranium ores: a review, J. Clean. Prod. 264 (2020), 121586, https://doi.org/10.1016/j.jclepro.2020.121586.
- D.E. Lazo, L.G. Dyer, R.D. Alorro, R. Browner, Treatment of monazite by organic acids I: solution conversion of rare earths, Hydrometallurgy 174 (2017) 202-209, https://doi.org/10.1016/j.hydromet.2017.10.003.
- Y.D. Wang, G.Y. Li, D.X. Ding, Z.X. Zhou, Q.W. Deng, N. Hu, Y. Tan, Uranium leaching using mixed organic acids produced by Aspergillus niger, J. Radioanal. Nucl. Chem. 298 (2) (2013) 769-773, https://doi.org/10.1007/s10967-013-2664-y.
- S. Kimuro, A. Kirishima, Y. Kitatsuji, K. Miyakawa, D. Akiyama, N. Sato, Thermodynamic study of the complexation of humic acid by calorimetry, J. Chem. Therm. 132 (2019) 352-362, https://doi.org/10.1016/j.jct.2019.01.011.
- X.D. Li, B. Wu, Q. Zhang, Y.Q. Liu, J.Q. Wang, F.S. Li, F.J. Ma, Q.B. Gu, Complexation of humic acid with Fe ions upon persulfate/ferrous oxidation: further insight from spectral analysis, J. Hazard Mater. 399 (2020), 123071, https://doi.org/10.1016/j.jhazmat.2020.123071.
- X.L. Sun, X.S. Ma, L. Leng, Y.C. Fang, Optical properties of the Suwannee river fulvic acid complexation with Thorium using 3D fluorescence spectroscopy, Spectroscopy 37 (8) (2022) 26-33, https://doi.org/10.56530/spectroscopy.xl4975e8.
- H.S. Xu, G.Q. Gong, Y.J. Zhang, F. Yuan, Y.X. Zhang, The spectroscopic characteristics of fulvic acid complexed with copper ion and the construction of the mechanism of action, Spectrosc. Spectr. Anal. 42 (4) (2022) 1010-1016, https://doi.org/10.3964/j.issn.1000-0593(2022)04-1010-07.
- B. Jagetiya, A. Sharma, Optimization of chelators to enhance uranium uptake from tailings for phytoremediation, Chemosphere 91 (5) (2013) 692-696, https://doi.org/10.1016/j.chemosphere.2012.11.044.
- J. Sun, Q. Li, T. Li, K.L. Xu, Z. Cui, G.Y. Li, Insights into formation and dissolution mechanism of bio-ore pellets in the one-step uranium leaching process by Aspergillus niger, Miner. Eng. 184 (2022), 107672, https://doi.org/10.1016/j.mineng.2022.107672.
- M.M. Amin, I.E. Elaassy, M.G. El-Feky, A.S.M. Sallam, M.S. Talaat, N.A. Kawady, Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt, J. Environ. Radioact. 134 (2014) 76-82, https://doi.org/10.1016/j.jenvrad.2014.02.024.
- J.Q. Ma, W.Q. Wang, J. Yang, S.F. Qin, Y.S. Yang, C.Y. Sun, G. Pei, M. Zeeshan, H. L. Liao, L. Liu, J.H. Huang, Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize, BMC Plant Biol. 22 (1) (2022) 64, https://doi.org/10.1186/s12870-021-03370-2.
- Z.X. Shang, Z. Ye, M.Q. Li, H.B. Ren, S.B. Cai, X.S. Hu, J.J. Yi, Dynamics of microbial communities, flavor, and physicochemical properties of pickled chayote during an industrial-scale natural fermentation: correlation between microorganisms and metabolites, Food Chem. 377 (2022), 132004, https://doi.org/10.1016/j.foodchem.2021.132004.
- M.M. Amin, I.E. Elaassy, M.G. El-Feky, N.A. Kawady, M.S. Talaat, A.S.M. Sallam, Recovery of uranium from low-grade ore using microorganism isolated from uraniferous rock sample, Separ. Sci. Technol. 53 (14) (2018) 2232-2237, https://doi.org/10.1080/01496395.2018.1437182.
- K.X. Wang, J.S. Chen, Extended structures and physicochemical properties of uranyl-organic compounds, Accounts Chem. Res. 44 (7) (2011) 531-540, https://doi.org/10.1021/ar200042t.
- N. Zhang, Y.H. Xing, F.Y. Bai, Triazine functionalized porous three-dimensional uranyl-organic framework: extraction of uranium (VI) and adsorption of cationic dyes in aqueous solution, Cryst. Growth Des. 20 (3) (2020) 1838-1848, https://doi.org/10.1021/acs.cgd.9b01553.
- Z. Wei, M. Kierans, G.M. Gadd, A model sheet mineral system to study fungal bioweathering of mica, Geomicrobiol. J. 29 (4) (2012) 323-331, https://doi.org/10.1080/01490451.2011.558567.
- Z.B. Li, L.W. Liu, X.C. Lu, L. Zhao, J.F. Ji, J. Chen, Mineral foraging and etching by the fungus Talaromyces flavus to obtain structurally bound iron, Chem. Geol. 586 (2021), 120592, https://doi.org/10.1016/j.chemgeo.2021.120592.
- A. Sanhueza, I.J. Ferrer, T. Vargas, R. Amils, C. S' anchez, Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties, Hydrometallurgy 51 (1) (1999) 115-129, https://doi.org/10.1016/S0304-386X(98)00079-6.
- A. Schippers, S. Hedrich, J. Vasters, M. Drobe, W. Sand, S. Willscher, Biomining: metal recovery from ores with microorganisms, Geobiotechnology I: Metal-related 141 (2014) 1-47, https://doi.org/10.1007/10_2013_216.
- M.F. Hochella Jr., There's plenty of room at the bottom: nanoscience in geochemistry, Geochem. Cosmochim. Acta 66 (5) (2002) 735-743, https://doi.org/10.1016/S0016-7037(01)00868-7.
- Z.B. Li, L. Liu, X. Lu, J. Ji, J. Chen, Analysis of the Talaromyces flavus exometabolome reveals the complex responses of the fungus to minerals, Geochem. Cosmochim. Acta 298 (2021) 70-86, https://doi.org/10.1016/j.gca.2021.01.036.
- A. Goriely, M. Tabor, Estimates of biomechanical forces in Magnaporthe grisea, Mycol. Res. 110 (7) (2006) 755-759, https://doi.org/10.1016/j.mycres.2006.03.014.
- R.J. Howard, M.A. Ferrari, D.H. Roach, N.P. Money, Penetration of hard substrates by a fungus employing enormous turgor pressures, Proc. Natl. Acad. Sci. USA 88 (24) (1991) 11281-11284, https://doi.org/10.1073/pnas.88.24.11281.
- G.M. Gadd, Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation, Mycol. Res. 111 (1) (2007) 3-49, https://doi.org/10.1016/j.mycres.2006.12.001.
- A.G. Newton, K.D. Kwon, Classical mechanical simulations of layer-and tunnel-structured manganese oxide minerals, Geochem. Cosmochim. Acta 291 (2020) 92-109, https://doi.org/10.1016/j.gca.2020.04.034.
- S.V. Golubev, A. Bauer, O.S. Pokrovsky, Effect of pH and organic ligands on the kinetics of smectite dissolution at 25 ℃, Geochem. Cosmochim. Acta 70 (17) (2006) 4436-4451, https://doi.org/10.1016/j.gca.2006.06.1557.
- B. Xiao, B. Lian, L.L. Sun, W.L. Shao, Gene transcription response to weathering of K-bearing minerals by Aspergillus fumigatus, Chem. Geol. 306 (2012) 1-9, https://doi.org/10.1016/j.chemgeo.2012.02.014.
- S. Uroz, C. Calvaruso, M.P. Turpault, P. Frey-Klett, Mineral weathering by bacteria: ecology, actors and mechanisms, Trends Microbiol. 17 (8) (2009) 378-387, https://doi.org/10.1016/j.tim.2009.05.004.