DOI QR코드

DOI QR Code

Strain-dependent-deformation property of Gyeongju compacted bentonite buffer material for engineered barrier system

  • Ivan Jeff Navea (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Jebie Balagosa (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Seok Yoon (Disposal Safety Evaluation Research and Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Yun Wook Choo (Department of Civil and Environmental Engineering, Crash & Quake Research Center, Kongju National University)
  • Received : 2023.07.19
  • Accepted : 2023.12.19
  • Published : 2024.05.25

Abstract

This study aims to investigate the strain-dependent-deformation property of Gyeongju bentonite buffer material. A series of unconfined compressive tests were performed with cylindrical specimens prepared at varying dry densities (𝜌d = 1.58 g/cm3 to 1.74 g/cm3) using cold isostatic pressing technique. It is found that as 𝜌d increase, the unconfined compressive strength (qu), failure strain, and elastic modulus (E) of Gyeongju compacted bentonite (GCB) increases. Normalized elastic modulus (Esec/Emax) degradation curves of GCB specimens are fitted using Ramberg-Osgood model and the elastic threshold strain (𝜀e,th) is determined through the fitted curves. The strain-dependency of E and Poisson's ratio (v) of GCB were observed. E and v were measured constant below 𝜀e,th of 0.14 %. Then, E decreases while v increases after exceeding the strain threshold. The Esec/Emax degradation curves of GCB in this study suggests wider linear range and higher linearity than those of sedimentary clay in previous study. On top of that, the influence of 𝜌d is observed on Esec/Emax degradation curves of GCB, showing a slight increase in 𝜀e,th with increase in 𝜌d. Furthermore, an empirical model of qu with 𝜌d and a correlation model between qu and E are proposed for Gyeongju bentonite buffer materials.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C2009985).

References

  1. V. Guimaraes, I. Bobos, Role of Clay Barrier Systems in the Disposal of Radioactive Waste, 2021, pp. 513-541, https://doi.org/10.1016/B978-0-12-820042-1.00011-0. 
  2. L. Ohazuruike, K.J. Lee, A comprehensive review on clay swelling and illitization of smectite in natural subsurface formations and engineered barrier systems, Nucl. Eng. Technol. 55 (2023) 1495-1506, https://doi.org/10.1016/j.net.2023.01.007. 
  3. S. Kwon, C. Lee, Thermal-Hydraulic-Mechanical coupling analysis using FLAC3DTOUGH2 for an in-situ heater test at Horonobe underground research laboratory, Geosystem Engineering 22 (2019) 1-10, https://doi.org/10.1080/12269328.2019.1638315. 
  4. International Atomic Energy Agency, IAEA country nuclear power profile, CNPP digital library. Accessed May 19, 2023. Available from: https://cnpp.iaea.org/countryprofiles/KoreaRepublicof/KoreaRepublicof.htm.. 
  5. A. Marsh, L. Williams, J. Lawrence, The important role and performance of engineered barriers in a UK geological disposal facility for higher activity radioactive waste, Prog. Nucl. Energy 137 (2021), 103736, https://doi.org/10.1016/j.pnucene.2021.103736. 
  6. P. Sellin, O. Leupin, The use of clay as an engineered barrier in radioactive-waste management - a review, Clay Clay Miner. 61 (2014) 477-498, https://doi.org/10.1346/CCMN.2013.0610601. 
  7. P. Blanc, F. Gherardi, P. Vieillard, N.C.M. Marty, H. Gailhanou, S. Gaboreau, B. Letat, C. Geloni, E.C. Gaucher, B. Mad'e, Thermodynamics for clay minerals: calculation tools and application to the case of illite/smectite interstratified minerals, Appl. Geochem. 130 (2021), 104986, https://doi.org/10.1016/j.apgeochem.2021.104986. 
  8. M. Juvankoski, Buffer Design 2012, Posiva 2012-2014 (2013) 75-114. 
  9. S. Yoon, J.-S. Jeon, S. Chang, D.-H. Lee, S.-R. Lee, G.-Y. Kim, Characteristics of water suction for a Korean compacted bentonite, Nucl. Technol. 206 (2020) 514-525, https://doi.org/10.1080/00295450.2019.1632093. 
  10. SKBF/KBS report, Final Storage of Spent Fuel-KBS-3, ISSN 0349-6015 (1983) 5-24. 
  11. W.-J. Cho, J.-O. Lee, C.-H. Kang, A compilation and evaluation of thermal and mechanical properties of bentonite-based buffer materials for a high- level waste repository, Nucl. Eng. Technol. (2002) 34. 
  12. G.J. Lee, S. Yoon, W.J. Cho, Effect of bentonite type on thermal conductivity in a HLW repository, Journal of Nuclear Fuel Cycle and Waste Technology 19 (3) (2021) 331-338, https://doi.org/10.7733/jnfcwt.2021.19.3.331. 
  13. S. Yoon, H. Jeong, H.-L. Lee, T. Kim, C.-H. Hong, J.-S. Kim, Evaluation of uniaxial compression and point load tests for compacted bentonites, Acta Geotech 18 (2) (2023) 1-12, https://doi.org/10.1007/s11440-023-01844-1. 
  14. J. Balagosa, S. Yoon, Y.W. Choo, Experimental investigation on small-strain dynamic properties and unconfined compressive strength of Gyeongju compacted bentonite for nuclear waste repository, KSCE J. Civ. Eng. 24 (2020) 2657-2668, https://doi.org/10.1007/s12205-020-0372-z. 
  15. G.R. Simmons, P. Baumgarter, The Disposal of Canada's Nuclear Fuel Waste: Engineering for a Disposal Facility, Atomic Energy of Canada Limited Report, 1994. AECL-10715, COG-93-5. 
  16. J.O. Lee, W.J. Cho, S. Kwon, Thermal-hydro-mechanical properties of reference bentonite buffer for a Korean HLW repository, Tunnel and Underground Space 21 (2011) 264-273. 
  17. J.H. Atkinson, Non-linear soil stiffness in routine design, Geotechnique 50 (2000) 487-508, https://doi.org/10.1680/geot.2000.50.5.487. 
  18. F. Tatsuoka, D.L. Presti, Y. Kohata, Deformation characteristics of soils and soft rocks under monotonic and cyclic loads and their relationships, in: International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 1995. https://scholarsmine.mst.edu/icrageesd/03icrageesd/session16/1. 
  19. J.B. Burland, Ninth Laurits Bjerrum Memorial Lecture: "Small is beautiful"-the stiffness of soils at small strains, Can. Geotech. J. 26 (1989) 499-516, https://doi.org/10.1139/t89-064. 
  20. F. Tatsuoka, R. Jardine, D. Lo Presti, H. Di Benedetto, T. Kodaka, Characterizing the pre-failure deformation properties of geomaterial, Proc. 14th ICSMFE. 4 (1999). 
  21. Y.-W. Choo, D.-S. Kim, Effect of loading frequency on small-strain shear modulus of soils, International Journal of Geo-Engineering 2 (3) (2010) 39-49. 
  22. D.M. Wood, Strain-dependent moduli and pressure meter tests, Geotechnique (2015), https://doi.org/10.1680/geot.1990.40.3.509. 
  23. S. Yamada, M. Hyodo, R.P. Orense, S.V. Dinesh, T. Hyodo, Strain-dependent dynamic properties of remolded sand-clay mixtures, J. Geotech. Geoenviron. Eng. 134 (2008) 972-981, https://doi.org/10.1061/(ASCE)1090-0241(2008)134:7(972). 
  24. K. Yao, Q. Chen, J. Ho, H. Xiao, F.H. Lee, Strain-dependent shear stiffness of cement-treated marine clay, J. Mater. Civ. Eng. 30 (2018), 04018255, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002460. 
  25. A.-R. Kim, I. Chang, G.-C. Cho, Y.-I. Kang, Strain-dependent dynamic characteristics of cement-treated clay, in: Deformation Characteristics of Geomaterials, IOS Press, 2011, pp. 779-784, https://doi.org/10.3233/978-1-60750-822-9-779. 
  26. R. Chattaraj, A. Sengupta, Liquefaction potential and strain dependent dynamic properties of Kasai River sand, Soil Dynam. Earthq. Eng. 90 (2016) 467-475, https://doi.org/10.1016/j.soildyn.2016.07.023. 
  27. M. Ghayoomi, G. Suprunenko, M. Mirshekari, Cyclic triaxial test to measure strain-dependent shear modulus of unsaturated sand, Int. J. GeoMech. 17 (2017), https://doi.org/10.1061/(ASCE)GM.1943-5622.0000917. 
  28. Y. Jafarian, H. Javdanian, A. Haddad, Strain-dependent dynamic properties of Bushehr siliceous-carbonate sand: experimental and comparative study, Soil Dynam. Earthq. Eng. 107 (2018) 339-349, https://doi.org/10.1016/j.soildyn.2018.01.033. 
  29. R. Yoshinaka, T.V. Tran, M. Osada, Non-linear, stress- and strain-dependent behavior of soft rocks under cyclic triaxial conditions, Int. J. Rock Mech. Min. Sci. 35 (1998) 941-955, https://doi.org/10.1016/S0148-9062(98)00158-2. 
  30. M. Cheraghalikhani, H. Niroumand, L. Balachowski, Micro- and nano- bentonite to improve the strength of clayey sand as a nano soil-improvement technique, Sci. Rep. 13 (2023), 10913, https://doi.org/10.1038/s41598-023-37936-x. 
  31. A. Esfandyaripour, S.H. Lajevardi, H. MolaAbasi, An experimental study to examine the effect of fiber and natural pozzolan on the failure characteristics of a cement-treated sand, Proceedings of the Institution of Civil Engineers - Ground Improvement (2023) 1-29, https://doi.org/10.1680/jgrim.22.00024. 
  32. ASTM D2487, Standard Practice for Classification of Soils for Engineering Purposes, ASTM International, 2017. 
  33. ASTM D4318, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, 2000. 
  34. ASTM D840, Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International., 2014. 
  35. ISO 9277, Determination of the Specific Surface Area of Solid by Gas Adsorption - BET Method, International Organization for Standardization, 2010. 
  36. Y. MalGoBalGaeBitNaLa, C. Heui-ju, L. Min-soo, L. Seung-yeop, Measurement of properties of domestic bentonite for a buffer of an HLW repository, J. of Nucl. Fuel Cycle and waste Technol. 14 (2016) 135-147, https://doi.org/10.7733/jnfcwt.2016.14.2.135. 
  37. ASTM D2166, Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International., 2006. 
  38. A.W. Bishop, D.J. Henkel, The Measurement of Soil Properties in the Triaxial Test, second ed., Edward Arnold, London, 1962. 
  39. L. Chen, P. Wu, Y. Chen, W. Zhang, Experimental study on physical-mechanical properties and fracture behaviors of saturated yellow sandstone considering coupling effect of freeze-thaw and specimen inclination, Sustainability 12 (2020) 1029, https://doi.org/10.3390/su12031029. 
  40. L. Dong, H. Xu, P. Fan, Z. Wu, On the experimental determination of Poisson's ratio for intact rocks and its variation as deformation develops, Adv. Civ. Eng. 2021 (2021) 1-10, https://doi.org/10.1155/2021/8843056. 
  41. Z.T. Bieniawski, M.J. Bernede, Suggested methods for determining the uniaxial compressive strength and deformability of rock materials, Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 16 (1979) 138-140, https://doi.org/10.1016/0148-9062(79)91451-7. 
  42. Y.-S. Fang, J.-J. Liao, T.-K. Lin, Mechanical properties of jet grouted soilcrete, QJEGH 27 (1994) 257-265, https://doi.org/10.1144/GSL.QJEGH.1994.027.P3.06. 
  43. Y. Song, Y. Geng, S. Dong, S. Ding, K. Xu, R. Yan, F. Liu, Study on mechanical properties and microstructure of basalt fiber-modified red clay, Sustainability 15 (2023) 4411, https://doi.org/10.3390/su15054411. 
  44. J. Wu, L. Liu, Y. Deng, G. Zhang, A. Zhou, Q. Wang, Distinguishing the effects of cementation versus density on the mechanical behavior of cement-based stabilized clays, Construct. Build. Mater. 271 (2021), 121571, https://doi.org/10.1016/j.conbuildmat.2020.121571. 
  45. F.S. Khan, S. Azam, M.E. Raghunandan, R. Clark, Compressive strength of compacted clay-sand mixes, Adv. Mater. Sci. Eng. 2014 (2014) 1-6, https://doi.org/10.1155/2014/921815. 
  46. A. Perbawa, E. Gramajo, T. Finkbeiner, J.C. Santamarina, Rock triaxial tests: global deformation vs local strain measurements-implications, Rock Mech. Rock Eng. 54 (2021) 3527-3540, https://doi.org/10.1007/s00603-021-02389-z. 
  47. M. Vucetic, R. Dobry, Effect of soil plasticity on cyclic response, Journal of Geotechnical Engineering 117 (1991) 89-107, https://doi.org/10.1061/(ASCE)0733-9410 (1991) 117:1(89). 
  48. D.-S. Kim, K. Stokoe, Characterization of resilient modulus of compacted subgrade soils using resonant column and torsional shear tests, Transport. Res. Rec. 1369 (1992) 83-91. 
  49. S. Kumar Thota, T. Duc Cao, F. Vahedifard, Poisson's ratio characteristic curve of unsaturated soils, J. Geotech. Geoenviron. Eng. 147 (2021), 04020149, https://doi.org/10.1061/(ASCE)GT.1943-5606.0002424. 
  50. W. Ramberg, W.R. Osgood, Description of stress-strain curves by three parameters, NASA scientific and technical information facility, Technical Note No. 902 (1943) 1-32. 
  51. J. Balagosa, M.-J. Lee, Y.W. Choo, H.-S. Kim, J.-M. Kim, Experimental validation of the cementation mechanism of wood pellet fly ash blended binder in weathered granite soil, Materials 16 (2023) 24, https://doi.org/10.3390/ma16196543. 
  52. S. Kim, H. Kim, A new metric of absolute percentage error for intermittent demand forecasts, Int. J. Forecast. 32 (2016) 669-679. 
  53. A. Gowida, S. Elkatatny, H. Gamal, Unconfined compressive strength (UCS) prediction in real-time while drilling using artificial intelligence tools, Neural Comput, Apple 33 (2021) 8043-8054, https://doi.org/10.1007/s00521-020-05546-7. 
  54. F.E. Richart Jr., Influence of soil properties on wave propagation during earthquakes. State-of-the-Art in Earthquake Engineering, in: 7th World Conference on Earthquake Engineering, Istanbul, Turkey, 1981, pp. 136-142. 
  55. T. Kagawa, Moduli and damping factors of soft marine clays, Journal of Geotechnical Engineering 118 (1992) 1360-1375, https://doi.org/10.1061/(ASCE)0733-9410(1992)118:9(1360). 
  56. B.A. Logo, B. Vasarhelyi, Estimation of the Poisson's rate of the intact rock in the function of the rigidity, Period. Polytech. Civ. Eng. 63 (2019) 1030-1037, https://doi.org/10.3311/PPci.14946. 
  57. Z.T. Bieniawski, Stability concept of brittle fracture propagation in rock, Eng. Geol. 2 (1967) 149-162, https://doi.org/10.1016/0013-7952(67)90014-2. 
  58. J.B. Walsh, The effect of cracks in rocks on Poisson's ratio, J. Geophys. Res. 70 (1965) 5249-5257, https://doi.org/10.1029/JZ070i020p05249, 1896-1977. 
  59. H. Gercek, Poisson's ratio values for rocks, Int. J. Rock Mech. Min. Sci. 44 (2007) 1-13, https://doi.org/10.1016/j.ijrmms.2006.04.011. 
  60. R. Das, R. Dhounchak, T.N. Singh, Analysis and prediction of brittle failure in rock blocks having a circular tunnel under uniaxial compression using acoustic Emission technique: laboratory testing and numerical simulation, Int. J. of Geo-Engineering 12 (2021) 14, https://doi.org/10.1186/s40703-020-00136-x. 
  61. M.J. Pucci, Development of a Multi-Measurement Confined Free-free Resonant Column Device and Initial Studies, Thesis, 2010, https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2010-08-1541. (Accessed 23 November 2022). 
  62. F.E. Richart Jr., J.R. Hall Jr., R.D. Woods, Vibrations of Soils and Foundation, Prentice-Hall, Inc., Upper Saddle River, 1970. 
  63. J. Balagosa, S. Yoon, Y.W. Choo, Evaluation on compression wave velocities and moduli of Gyeongju compacted bentonite, Journal of the Korean Geotechnical Society 35 (7) (2019) 41-50. 
  64. W.J. Cho, J.O. Lee, C.H. Kang, K.S. Chun, Physicochemical, Mineralogical and Mechanical Properties of Domestic Bentonite and Bentonite-Sand Mixture as a Buffer Material in the High-Level Waste Repository, Korea Atomic Energy Research Institute, 1999. Daejeon, Korea Research Report, KAERI/TR-1388/99. 
  65. K. Takaji, H. Suzuki, Static Mechanical Properties of Buffer Material, Japan Nuclear Cycle Development Institute, Tokaimura, Japan, 1999. Research Report, JNC-TN-8400-99-041. 
  66. H. Suzuki, M. Shibata, J. Yamagata, I. Hirose, K. Terakado, Physical and mechanical properties of bentonite (I). Power Reactor and Nuclear Fuel Research Report, Research Report, 1992. PNC TN8410 92-057. 
  67. C.M.A. Iftikhar, A.S. Khan, V. Nambori, The effect of temperature on the mechanical behavior of Berea sandstone under confining pressure: experiments, Int. J. of Geo-Engineering 14 (2023) 18, https://doi.org/10.1186/s40703-023-00191-0. 
  68. L. Tang, Y. Wang, Y. Sun, Y. Chen, Z. Zhao, A review on the failure modes of rock and soil mass under compression and the exploration about constitutive equations of rock and soil mass, Adv. Civ. Eng. 2022 (2022) 1-13, https://doi.org/10.1155/2022/7481767. 
  69. G. Mesri, B. Vardhanabhuti, Compression of granular materials, Can. Geotech. J. 46 (2009) 369-392, https://doi.org/10.1139/T08-123. 
  70. D. Kim, B.H. Nam, H. Youn, Effect of clay content on the shear strength of clay-sand mixture, Int. J. of Geo-Engineering 9 (2018) 19, https://doi.org/10.1186/s40703-018-0087-x. 
  71. S. Kahraman, A.S. Aloglu, E. Saygin, B. Aydin, The effect of clay content on the relation between uniaxial compressive strength and needle penetration index for clay-bearing rocks, Int. J. of Geo-Engineering 12 (2021) 6, https://doi.org/10.1186/s40703-020-00135-y. 
  72. W.J. Cho, Radioactive Waste Disposal, Korea Atomic Energy Research Institute, 2017. GP-495. 
  73. J. Ritola, E. Pyy, Isostatic Compression of Buffer Blocks-Middle Scale, Working Report 2011-62, Posiva Oy, 2012. 
  74. M. Villar, J. Fernandez-Soler, A. Delgado Huertas, E. Reyes, J. Linares, C. Jimenez de Cisneros, F. Huertas, E. Caballero, S. Leguey, J. Cuevas, The study of Spanish clays for their use as sealing materials in nuclear waste repositories: 20 years of progress, J. Iber. Geol. 32 (2006) 15-36.