DOI QR코드

DOI QR Code

Bronchoscopic Strategies to Improve Diagnostic Yield in Pulmonary Tuberculosis Patients

  • Saerom Kim (Department of Internal Medicine, Pusan National University Hospital) ;
  • Jung Seop Eom (Department of Internal Medicine, Pusan National University Hospital) ;
  • Jeongha Mok (Department of Internal Medicine, Pusan National University Hospital)
  • Received : 2024.02.06
  • Accepted : 2024.03.26
  • Published : 2024.07.31

Abstract

In cases where pulmonary tuberculosis (PTB) is not microbiologically diagnosed via sputum specimens, bronchoscopy has been the conventional method to enhance diagnostic rates. Although the additional benefit of bronchoscopy in diagnosing PTB is well-known, its overall effectiveness remains suboptimal. This review introduces several strategies for improving PTB diagnosis via bronchoscopy. First, it discusses how bronchoalveolar lavage or an increased number of bronchial washings can increase specimen abundance. Second, it explores how thin or ultrathin bronchoscopes can achieve specimen acquisition closer to tuberculosis (TB) lesions. Third, it highlights the importance of conducting more sensitive TB-polymerase chain reaction tests on bronchoscopic specimens, including the Xpert MTB/RIF assay and the Xpert MTB/RIF Ultra assay. Finally, it surveys the implementation of endobronchial ultrasound with a guide sheath for tuberculomas, collection of post-bronchoscopy sputum, and reduced use of lidocaine for local anesthesia. A strategic combination of these approaches may enhance the diagnostic rates in PTB patients undergoing bronchoscopy.

Keywords

References

  1. World Health Organization. Global tuberculosis report 2023. Geneva: WHO; 2023.
  2. Moore DA, Roper MH. Diagnosis of smear-negative tuberculosis in people with HIV/AIDS. Lancet 2007;370:1033-4.
  3. Getahun H, Harrington M, O'Brien R, Nunn P. Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes. Lancet 2007;369:2042-9.
  4. Steingart KR, Ramsay A, Pai M. Optimizing sputum smear microscopy for the diagnosis of pulmonary tuberculosis. Expert Rev Anti Infect Ther 2007;5:327-31.
  5. Davis JL, Cattamanchi A, Cuevas LE, Hopewell PC, Steingart KR. Diagnostic accuracy of same-day microscopy versus standard microscopy for pulmonary tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis 2013;13:147-54.
  6. Min J, Kim HW, Ko Y, Oh JY, Kang JY, Lee J, et al. Tuberculosis surveillance and monitoring under the National Public-Private Mix Tuberculosis Control Project in South Korea 2016-2017. Tuberc Respir Dis (Seoul) 2020;83:218-27.
  7. Luo W, Lin Y, Li Z, Wang W, Shi Y. Comparison of sputum induction and bronchoscopy in diagnosis of sputum smear-negative pulmonary tuberculosis: a systemic review and meta-analysis. BMC Pulm Med 2020;20:146.
  8. Oh JY, Lee SS, Kim HW, Min J, Ko Y, Koo HK, et al. Additional usefulness of bronchoscopy in patients with initial microbiologically negative pulmonary tuberculosis: a retrospective analysis of a Korean Nationwide Prospective Cohort Study. Infect Drug Resist 2022;15:1029-37.
  9. World Health Organization. Toman's tuberculosis: case detection, treatment, and monitoring: questions and answers. Geneva: WHO; 2004.
  10. Datta S, Shah L, Gilman RH, Evans CA. Comparison of sputum collection methods for tuberculosis diagnosis: a systematic review and pairwise and network meta-analysis. Lancet Glob Health 2017;5:e760-71.
  11. Lewinsohn DM, Leonard MK, LoBue PA, Cohn DL, Daley CL, Desmond E, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: diagnosis of tuberculosis in adults and children. Clin Infect Dis 2017;64:e1-33.
  12. National Institute for Health and Care Excellence. Tuberculosis, NICE guideline 2016 [Internet]. London: NICE; 2024 [cited 2024 Apr 4]. Available from: https://www.nice.org.uk/guidance/ng33/chapter/Context.
  13. Joint Committee for the Revision of Korean Guidelines for Tuberculosis; Korea Centers for Disease Control and Prevention. Korean guidelines for tuberculosis. 5th ed. Cheongju: KCDC; 2024.
  14. Yoo H, Song JU, Koh WJ, Jeon K, Um SW, Suh GY, et al. Additional role of second washing specimen obtained during single bronchoscopy session in diagnosis of pulmonary tuberculosis. BMC Infect Dis 2013;13:404.
  15. Levy H, Horak DA, Lewis MI. The value of bronchial washings and bronchoalveolar lavage in the diagnosis of lymphangitic carcinomatosis. Chest 1988;94:1028-30.
  16. Pinckard JK, Kollef M, Dunne WM. Culturing bronchial washings obtained during bronchoscopy fails to add diagnostic utility to culturing the bronchoalveolar lavage fluid alone. Diagn Microbiol Infect Dis 2002;43:99-105.
  17. Kim YW, Kwon BS, Lim SY, Lee YJ, Cho YJ, Yoon HI, et al. Diagnostic value of bronchoalveolar lavage and bronchial washing in sputum-scarce or smear-negative cases with suspected pulmonary tuberculosis: a randomized study. Clin Microbiol Infect 2020;26:911-6.
  18. Ishiwata T, Gregor A, Inage T, Yasufuku K. Advances in interventional diagnostic bronchoscopy for peripheral pulmonary lesions. Expert Rev Respir Med 2019;13:885-97.
  19. Eom JS, Park S, Jang H, Kim S, Yoo WH, Kim SH, et al. Bronchial washing using a thin versus a thick bronchoscope to diagnose pulmonary tuberculosis: a randomized trial. Clin Infect Dis 2023;76:238-44.
  20. Dolina MY, Cornish DC, Merritt SA, Rai L, Mahraj R, Higgins WE, et al. Interbronchoscopist variability in endobronchial path selection: a simulation study. Chest 2008;133:897-905.
  21. Miyoshi S, Isobe K, Shimizu H, Sunakawa M, Suzuki A, Sugino K, et al. The utility of virtual bronchoscopy using a computed tomography workstation for conducting conventional bronchoscopy: a retrospective analysis of clinical practice. Respiration 2019;97:52-9.
  22. Jiang S, Xie F, Mao X, Ma H, Sun J. The value of navigation bronchoscopy in the diagnosis of peripheral pulmonary lesions: a meta-analysis. Thorac Cancer 2020;11:1191-201.
  23. Fielding D, Oki M. Technologies for targeting the peripheral pulmonary nodule including robotics. Respirology 2020;25:914-23.
  24. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 2010;363:1005-15.
  25. World Health Organization consolidated guidelines on tuberculosis. Module 3: diagnosis- rapid diagnostics for tuberculosis detection, 2021 update. Geneva: WHO; 2021.
  26. Son E, Jang J, Kim T, Jang JH, Chung JH, Seol HY, et al. Head-to-head comparison between Xpert MTB/RIF assay and real-time polymerase chain reaction assay using bronchial washing specimens for tuberculosis diagnosis. Tuberc Respir Dis (Seoul) 2022;85:89-95.
  27. Ko Y, Lee HK, Lee YS, Kim MY, Shin JH, Shim EJ, et al. Accuracy of Xpert MTB/RIF assay compared with AdvanSure TB/NTM real-time PCR using bronchoscopy specimens. Int J Tuberc Lung Dis 2016;20:115-20.
  28. To KW, Kam KM, Chan DP, Yip WH, Chan KP, Lo R, et al. Utility of GeneXpert in analysis of bronchoalveolar lavage samples from patients with suspected tuberculosis in an intermediate-burden setting. J Infect 2018;77:296-301.
  29. Dorman SE, Schumacher SG, Alland D, Nabeta P, Armstrong DT, King B, et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis 2018;18:76-84.
  30. Chien JY, Lin CK, Yu CJ, Hsueh PR. Usefulness of Xpert MTB/RIF Ultra to rapidly diagnose sputum smear-negative pulmonary tuberculosis using bronchial washing fluid. Front Microbiol 2020;11:588963.
  31. Yao L, Chen S, Sha W, Gu Y. The diagnostic performance of endobronchial ultrasound with Xpert MTB/RIF Ultra in smear-negative pulmonary tuberculosis. BMC Infect Dis 2023;23:107.
  32. Cao J, Gu Y, Wu XC, Cheng LP, Wang L, Qu QR, et al. EBUS-GS with the GeneXpert MTB/RIF assay for diagnosis of Mycobacterium tuberculosis infection of isolated pulmonary nodules. Eur J Med Res 2023;28:370.
  33. Park JH, Jo KW, Shim TS, Kim SH. Diagnostic yield of post-bronchoscopy sputum for diagnosing pauci-bacillary pulmonary tuberculosis. Ann Med 2021;53:576-80.
  34. Ali GA, Goravey W, Howady FS, Ali M, Alshurafa A, Abdalhadi AM, et al. The role of post-bronchoscopy sputum examination in screening for active tuberculosis. Trop Med Infect Dis 2022;8:13.
  35. Conte BA, Laforet EG. The role of the topical anesthetic agent in modifying bacteriologic data obtained by bronchoscopy. N Engl J Med 1962;267:957-60.
  36. Schmidt RM, Rosenkranz HS. Antimicrobial activity of local anesthetics: lidocaine and procaine. J Infect Dis 1970;121:597-607.
  37. Kim HW, Myong JP, Kim JS. Estimating the burden of nosocomial exposure to tuberculosis in South Korea, a nationwide population based cross-sectional study. Korean J Intern Med 2021;36:1134-45.
  38. Na HJ, Eom JS, Lee G, Mok JH, Kim MH, Lee K, et al. Exposure to Mycobacterium tuberculosis during flexible bronchoscopy in patients with unexpected pulmonary tuberculosis. PLoS One 2016;11:e0156385.
  39. Gu KM, Kang HR, Park J, Kwak N, Yim JJ. Usefulness of post-bronchoscopy sputum culture for diagnosis of nontuberculous mycobacterial pulmonary disease. J Korean Med Sci 2021;36:e202.