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Genetic causes of infertility 

It is estimated that approximately 50% of infertility cases result 
from genetic defects at various levels, from chromosome abnormali-
ties to single nucleotide variations [1]. However, aside from numeri-
cal sex chromosome abnormalities, the genetic causes of infertility 
are highly heterogeneous, making it challenging to understand the 
genetic background of individual patients. While advanced genome 
analysis methods, such as chromosome microarray (CMA) and 
next-generation sequencing (NGS), are commonly used for many 
genetic diseases, only conventional chromosome analysis and Y 
chromosome microdeletion tests are currently offered as routine ge-
netic tests for infertile couples. In this section, we briefly discuss the 
well-known genetic causes associated with infertility. 
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Infertility is a complex disease characterized by extreme genetic heterogeneity, compounded by various environmental factors. While there 
are exceptions, individual genetic and genomic variations related to infertility are typically rare, often family-specific, and may serve as sus-
ceptibility factors rather than direct causes of the disease. Consequently, identifying the cause of infertility and developing prevention and 
treatment strategies based on these factors remain challenging tasks, even in the modern genomic era. In this review, we first examine the 
genetic and genomic variations associated with infertility, and subsequently summarize the concepts and methods of preimplantation ge-
netic testing in light of advances in genome analysis technology. 

Keywords: Genetic variation; High-throughput nucleotide sequencing; Infertility; Preimplantation diagnosis; Reproductive medicine  

1. Chromosome abnormalities in infertile couples 
Numerical and structural chromosome abnormalities are well-es-

tablished causes of infertility, accounting for up to 20% of cases in in-
fertile males and 7.82% in infertile females [2,3]. Therefore, chromo-
some analysis using peripheral blood is typically recommended for 
new patients. Klinefelter syndrome (47, XXY) and Turner syndrome 
(45, X) are the most common causes of infertility in males and fe-
males, respectively [4,5]. Klinefelter syndrome affects 0.1% to 0.2% 
of men, while Turner syndrome is found in approximately 0.04% of 
women [6,7]. 

Balanced structural chromosome abnormalities, such as transloca-
tions and inversions, are a well-established cause of infertility. Al-
though carriers may exhibit little to no clinical phenotype, an unbal-
anced chromosome can result from unusual pairing and recombina-
tion between homologous chromosomes. This unbalanced chromo-
some may be passed onto the fetus, leading to a higher rate of mis-
carriages [8,9]. A Robertsonian translocation (RT), a condition where 
the long arms of two acrocentric chromosomes attach to each other, 
occurs in approximately 1 to 1.2 out of every 1,000 newborns. The 
most common form of RT is rob(13;14), accounting for 75% of all RT 
cases. Carriers of this form are known to have a high likelihood of 
male infertility and recurrent pregnancy loss [10]. 

2. Chromosomal abnormalities in gametes and early embryos 
Nondisjunction can occur in either homologous chromosomes 

(during meiosis I) or sister chromatids (during meiosis II), leading to 
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gametes that either lack a chromosome or possess an extra copy of 
one. Most autosomal aneuploidies found in fetuses are primarily of 
maternal origin, resulting from nondisjunction in meiosis I. It is 
well-established that chromosomal nondisjunction during oogene-
sis is age-related, with a particularly sharp increase observed in 
women aged 35 and older. This can be attributed to the unique de-
velopmental process in oocytes, which begins before birth and con-
cludes after fertilization [11,12]. As oocytes age, their capacity for mi-
crotubule formation and dissociation during anaphase diminishes. 
This can lead to chromosomal nondisjunction, thereby increasing 
the risk of oocyte aneuploidies, implantation failure, or spontaneous 
abortion [13,14]. 

Advanced paternal age can also impact fertility. While there have 
been reports of increased aneuploidy in sperm, the effect is not as 
pronounced as it is in females. Instead, age may lead to decreased 
testicular function, sperm DNA damage, and an increase in muta-
tions [15,16]. It is noteworthy that in patients with oligozoospermia 
and teratozoospermia, who have reduced sperm quality, a higher 
frequency of sperm aneuploidies was observed, regardless of age 
[17-19]. Furthermore, chromosome abnormalities in cleavage-stage 
in vitro fertilization (IVF) embryos are known to be common. Numer-
ous studies have found that more than 50% of embryos at this stage 
exhibit chromosome abnormalities [20,21]. Vanneste et al. [22] 
demonstrated that mitotic nondisjunction and chromosome insta-
bility are common in human cleavage-stage embryos. They found 
that even within a single embryo, each blastomere can have differ-
ent types of numerical and structural chromosome abnormalities 
[22]. This is a major factor underlying the reduced effectiveness of 
preimplantation genetic screening (PGS) and the difficulty in deter-
mining which embryos are suitable for transplantation. 

Intracytoplasmic sperm injection (ICSI) was introduced in the 
1990s as a treatment for infertile patients who had experienced un-
successful IVF attempts [23,24]. Although ICSI has been proven effec-
tive for treating male infertility, concerns about the safety of off-
spring have been raised due to the invasiveness of the procedure 
[25]. Early studies published shortly after the introduction of ICSI re-
ported an increased risk of chromosomal abnormalities in fetuses 
[8,26,27]. However, a recent systematic review found no statistically 
significant association between ICSI or IVF and fetal aneuploidy 
[25,28]. Despite these concerns, ICSI and IVF continue to be routinely 
performed in many clinics and remain effective treatment methods 
for infertile couples. 

3. Epigenetic abnormalities 
Epigenetic modifications refer to inheritable changes that can 

manifest differently due to environmental factors, without any alter-
ation to the DNA sequence [29]. These modifications are recognized 

as a crucial factor in regulating gene expression across a range of bi-
ological processes, including gametogenesis [30]. For example, alter-
ations in modifications such as histone methylation, changes in the 
P1/P2 ratio, and methylation patterns in imprinting genes may lead 
to infertility by impacting the maintenance of pregnancy and fetal 
development [31]. 

As primordial germ cells migrate to the gonadal ridge, most DNA 
methylation patterns, which were previously programmed similarly 
to somatic tissue, are soon erased and subsequently re-established. 
This reprogramming process allows the correction of heritable meth-
ylation errors and introduces new methylation patterns. However, 
changes in the expression of essential genes due to either hyper- or 
hypo-methylation can disrupt gametogenesis [30]. For instance, 
studies have reported that infertile patients with low sperm concen-
tration, motility, and morphology exhibited higher levels of methyla-
tion in their sperm than healthy individuals [32]. 

In addition to methylation, acetylation and ubiquitination have 
been demonstrated to play a role in modifying histone proteins and 
regulating gene expression, which is implicated in infertility. The tran-
sition from histone to protamine is necessary for the proper packag-
ing of the required DNA into haploid spermatids. This transition is fa-
cilitated by the hyperacetylation of histone H4, which reduces the af-
finity of histone H4 for DNA [30]. Sonnack et al. [33] observed a de-
crease in the hyperacetylation of histone core proteins in infertile pa-
tients, suggesting the importance of these modifications in the tran-
sition from round spermatids to mature, fertile spermatozoa. 

4. Copy number variations 
Copy number variations (CNVs) are submicroscopic chromosomal 

structural changes involving alterations of 1 kilobase or more [34]. 
CNVs are known to originate from chromosomal structural rear-
rangements, including inversion, translocation, and deletion/inser-
tion. The clinical significance of a CNV is determined by the size of 
the variation and the specific genes within the affected region [31]. 

A CNV variant associated with infertility is the microdeletion of the 
azoospermia factor (AZF) region on the Y chromosome, which ac-
counts for approximately 10% of all infertile male patients [35,36]. 
Deletions within each segment of the AZF region are known to pres-
ent a range of infertility symptoms, from severe oligozoospermia to 
Sertoli-cell-only syndrome [37]. Conversely, CNVs identified on the X 
chromosome are considered a primary cause of female infertility, in-
cluding conditions such as premature ovarian failure [38,39]. Howev-
er, many of the CNVs discovered in these studies are still classified as 
variants of uncertain significance, indicating a need for further re-
search to understand their actual impact. 

The CMA technique enables rapid, automated detection of struc-
tural abnormalities or submicroscopic CNVs on targeted chromo-
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somes at units of 4 to 10 Mb or less [40,41]. First employed in repro-
ductive studies in 2005, CMA was used to analyze the causes of mis-
carriages attributed to chromosomal abnormalities, as well as fetuses 
exhibiting morphological abnormalities [40,42,43]. Due to its effec-
tiveness in cases that could not be karyotyped, CMA is now recom-
mended for ongoing pregnancies, as well as cases involving congen-
ital anomalies and fetuses with morphological abnormalities [40]. 

Recently, CMA has been introduced as an advanced method for 
detecting more precise sizes and breakpoints of Yq microdeletions. 
Zhu et al. [44] identified various CNVs of the azoospermia factor c 
(AZFc) regions in patients with azoospermia and severe oligozo-
ospermia. This suggests that the genes located in these regions 
(DAZ1, DAZ2, DAZ3, CDY1, and BPY2) may play a significant role in 
male infertility [44]. CMA can provide more detailed information on 
chromosomal CNVs than traditional karyotyping can. However, it 
does have limitations, such as its inability to detect balanced translo-
cations or low-level mosaicism. As a result, there has been a shift to-
wards more advanced technology, NGS, allowing more sophisticated 
and accurate detection of chromosomal variations. 

Single gene defects 

Hundreds of genes associated with infertility have been identified 
through mouse models. These genes play a role in sex determina-
tion, the formation of reproductive organs, gametogenesis, cell divi-
sion, and the regulation of pituitary and gonadal functions within 
the endocrine system [45]. While pathogenic variants in human ho-
mologs of some of these genes have been discovered in patients 
with infertility, the application of sequencing analysis as a clinical test 
has not been widely adopted.  

For female infertility, genetic analysis of fragile X mental retarda-
tion 1 (FMR1) and anosmin 1 (ANOS1) (also called KAL1) has been 
recommended for patients with premature ovarian insufficiency 
(POI) and hypogonadotropic hypogonadism (HH), respectively, since 
the early 2000s [46]. Early research identified variants in genes en-
coding gonadotropic hormones such as gonadotropin-releasing 
hormone, follicle-stimulating hormone, and luteinizing hormone, as 
well as their receptors [11,47]. In addition, other POI-related genes, 
such as FOXL2, SOHLH1, GDF9, NOBOX, STAG3, and TUBB8, have 
been found to affect oocyte maturation and meiosis [48-53]. Polycys-
tic ovary syndrome (PCOS), another major cause of reproductive 
problems, is the most common endocrine-metabolic disorder in re-
productive-aged women [54]. Patients with PCOS often show sub-
fertility due to ovulatory dysfunction [55]. Numerous genes associat-
ed with PCOS have been identified through genome-wide associa-
tion studies (GWAS), and these genes play roles in gonadotrophin 
action, ovarian follicle development, diabetes, and organ growth 

[56]. few clear pathogenic variants in these genes have been identi-
fied, and genetic testing for diagnosis is not typically conducted. 

Since the mid-2010s, studies have been undertaken to screen fer-
tility-related genes simultaneously using NGS technologies [57,58]. 
Volozonoka et al. [59] proposed a diagnostic gene panel for female 
reproductive failure, based on a systematic review of previously pub-
lished papers. This gene panel includes 79 genes associated with 
conditions such as HH, ovarian dysgenesis, premature ovarian fail-
ure/insufficiency, oocyte maturation, and fertilization failure [59]. 
Based on these studies, it is anticipated that targeted-exome analysis 
could be introduced in the near future as a diagnostic tool for wom-
en with fertility disorders. 

Similar to female infertility, the etiology of male infertility is also 
heterogeneous. Alongside advancements in NGS technology, stud-
ies have been conducted to identify new potential genes associat-
ed with male infertility. Over 3,500 papers have been published on 
this topic, suggesting the involvement of hundreds of genes. How-
ever, diagnosis is currently limited to karyotype, AZF microdeletion, 
and cystic fibrosis transmembrane conductance regulator (CFTR) 
analysis [60]. 

The primary phenotypes of male infertility encompass both oligo-
zoospermia and azoospermia, which are defined by a diminished 
sperm count or a complete lack of sperm production. Additionally, 
asthenozoospermia and teratozoospermia are included, both of 
which are distinguished by irregularities in sperm motility and mor-
phology, respectively [61]. Well-known candidate genes for male in-
fertility, especially for non-obstructive azoospermia (NOA), include 
TEX11, SYCP3, and SYCE1, which are known to be involved in meio-
sis [35,62]. Furthermore, the genes that encode proteins of the axo-
nal dynein cluster, such as DNAH1, DNAH5, and DNAH11, have 
been suggested to be associated with asthenozoospermia. Variants 
of AURKC and SPATA16 were also identified in patients showing 
sperms with multiple flagella or globozoospermia [61,63]. Since all 
genes involved in spermatogenesis are candidate genes for male in-
fertility, basic research on the gene-disease relationship for each 
gene is very important. 

A systematic review published in 2018 integrated data from previ-
ous studies and recent NGS analyses to suggest 92 candidate genes 
that have at least moderate evidence supporting their involvement 
in male infertility [60]. This indicates potential diagnostic advance-
ments in the field of male reproduction. However, this list only in-
cludes approximately 18% of gene-disease relationships, suggesting 
that a significant number of associations still require substantial evi-
dence. This limitation may stem from the nature of medical genetics, 
which primarily focuses on inherited variations. For instance, many 
genes that result in non-syndromic phenotypes exhibit recessive in-
heritance, which is only applicable in specific cases, such as those in-
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volving consanguineous families. Moreover, the exploration of asso-
ciations with autosomal dominantly inherited causative genes of 
male infertility is limited unless a de novo variation occurs, as the 
transmission of variation to subsequent generations is rare. This is 
evidenced by the fact that only three genes (DMRT1, KLHL10, and 
SYCP3) that exhibit autosomal dominance have moderate evidence 
among the 92 genes on the list. To address these limitations, future 
research on male infertility should include repeated reanalysis of ge-
netic data, as well as more in-depth functional and cohort studies.  

Preimplantation genetic testing 

With advances in genome analysis technology, preimplantation 
genetic testing (PGT) methods have also changed (Figure 1). The 
early methods, which were labor-intensive, required high skill, and 
were time-limited, are now being replaced by more automated and 
high-throughput methods. PGT can be categorized into several 
types based on the nature of the genetic defects (PGT for aneuploidy 
[PGT-A], PGT for structural rearrangement [PGT-SR], PGT for mono-
genic disorder [PGT-M], PGT for polygenic disorder [PGT-P]) and the 
method of obtaining genetic materials (PGT from embryo biopsy 
and non-invasive PGT [niPGT]). In this paper, our primary focus is on 
the technical aspects of PGT. 

1. Preimplantation genetic testing for aneuploidy 
PGT-A, previously known as PGS, is a genetic test used to deter-

mine if embryos created through IVF have genomic imbalances, in-
cluding chromosomal aneuploidies. Munne et al. [64] first reported 
PGT-A in 1993. From then until the early 2000s, one to two blasto-
meres were typically isolated from 8-cell stage embryos. Subse-
quently, five to nine chromosomes, most commonly associated with 
fetal chromosomal aneuploidies, were primarily analyzed using fluo-
rescent in situ hybridization (FISH) [64]. However, the technical lim-
itations of FISH, such as its inability to identify aneuploidy in all chro-
mosomes, coupled with the high mosaicism rate of 8-cell embryos, 
significantly reduced the accuracy of PGS [65]. 

As advancements have been made in embryo culture methods 
and genome analysis technology, the use of PGT-A, which incorpo-
rates trophectoderm (TE) biopsy, vitrification, and array-based ge-
nome analysis or NGS techniques, has become commonplace 
[66,67]. TE biopsy offers several advantages over blastomere biopsy. 
By isolating more cells (typically 5 to 10), the failure rate of DNA 
amplification can be reduced, leading to more reliable diagnostic 
results. 

Furthermore, TE biopsy is less invasive to embryos than blastomere 
biopsy [68]. Array-based comparative genomic hybridization (array 
CGH) enables the identification of segmental imbalances in chromo-
somes, as well as aneuploidies of all 24 human chromosomes. Initially, 

Figure 1. Technical advances for preimplantation genetic testing (PGT). PGT-A, PGT for aneuploidy; PGT-SR, PGT for structural rearrangement; 
PGT-M, PGT for monogenic disorder; FISH, fluorescent in situ hybridization; CGH, comparative genomic hybridization; SNP, single nucleotide 
polymorphism; qPCR, quantitative polymerase chain reaction; NGS, next-generation sequencing; PCR, polymerase chain reaction.
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array CGH was used to detect genomic imbalances in patients exhibit-
ing abnormal phenotypes or in tumors. It was later introduced for ge-
netic screening of preimplantation embryos [69-72]. 

NGS technologies are presently the most frequently utilized for 
PGT-A. This is due to the commercial availability and cost-competi-
tiveness of NGS-chips for PGS and standard analysis protocols (VeriS-
eq, Illumina; ReproSeq, Thermo Fisher) provided by centralized ser-
vice providers. These technologies offer a higher resolution com-
pared to earlier array-based techniques, enabling more accurate 
identification of mosaicism with a 20% to 80% ratio of normal-to-ab-
normal cells [73]. However, this advantage often leads to challenges 
in determining which embryos are suitable for transplantation. 

Several researchers have argued that PGS may not be effective in 
improving the actual fertility rate [74,75]. These authors concur that 
the rates of aneuploidy and miscarriage can be diminished by screen-
ing embryos using PGS, but only for patients who have a sufficient 
number of embryos for analysis and a favorable prognosis. Conversely, 
they also highlighted the potential for discarding embryos that could 
potentially develop into healthy newborns in less favorable cases. For 
example, Scriven [76] noted that while PGT-A is a superior test for old-
er individuals in terms of reducing miscarriage risk, their cumulative 
ongoing pregnancy rate is lower than that of younger individuals. Fur-
thermore, Greco et al. [77] found that approximately 30% of implanted 
mosaic embryos developed into euploid newborns. A recent cellular 
study demonstrated that a small proportion of euploid cells could sal-
vage mosaic embryonic organoids (gastruloids) when combined with 
aneuploid cells, suggesting a potential in vivo mechanism for aneu-
ploid elimination in humans [78]. Nevertheless, the efficacy of PGS re-
mains a topic of ongoing debate.  

2. Preimplantation genetic testing for monogenic disorders  
PGT-M, formerly termed preimplantation genetic diagnosis (PGD), 

is a test used to determine if preimplantation embryos are at risk for 
certain Mendelian monogenic diseases. PGD, when administered to 
carriers of balanced structural chromosome abnormalities, is now 
classified separately as PGT-SR. The procedures and testing methods 
for PGT-SR are essentially the same as those for PGT-A and PGT-M. 
PGT-M can be administered to couples who are at risk of transmitting 
a specific genetic disorder to their offspring, or to couples who are 
both carriers of an autosomal recessive disease. 

In 1990, the first instance of PGD was reported for an X-linked ge-
netic disorder, achieved through sexing via the amplification of Y 
chromosome-specific sequences [79]. Initially, PGT-M was mainly 
performed using polymerase chain reaction (PCR)-based methods 
[80]. Given that only a minuscule amount of DNA is available, PCR-
based techniques were prone to errors due to amplification failure, 
allele dropout (where only one of two alleles is randomly amplified), 

and contamination, among other issues [81]. These limitations of 
PCR-based methods have been significantly mitigated through the 
advent of whole genome amplification technologies and the analy-
sis of multiple loci linked to the target sequence using short tandem 
repeat (STR) markers [82-84]. Since the mid-2010s, reports of PGT-M 
using NGS-based technology have emerged [85,86]. This method 
can simultaneously analyze chromosome copy number and patho-
genic variants. 

Karyomapping, a technique frequently employed in PGT-M, in-
volves genome-wide linkage analysis for a wide variety of pathogen-
ic variants, ranging from CNVs to single gene defects, including im-
printing disorders [87]. This method analyzes hundreds of thousands 
of single nucleotide polymorphisms (SNPs), which are evenly distrib-
uted across the entire genome, thereby reducing the potential for di-
agnostic errors. Furthermore, it eliminates the need to select STR 
markers for specific genetic diseases, making it possible to standard-
ize the method for nearly any disease. 

3. Preimplantation genetic testing for polygenic disorders 
Treff et al. [72] proposed PGT for polygenic conditions such as type 

1 and type 2 diabetes, coronary artery disease, and certain types of 
cancers. However, it has not been incorporated into medical care due 
to challenges in interpreting results and the ethical issues it raises. 
The results of PGT-P are determined as the relative risk of disease 
based on the polygenic risk score for numerous involved genes, rath-
er than a straightforward distinction between normal and affected. 
These polygenic risk scores are obtained through GWAS of a popula-
tion, and thus may vary among different populations [88]. Typically, 
the variants associated with diseases identified through GWAS ex-
hibit a low odds ratio, less than 1.2. 

Consequently, the predictability of PGT-P in selecting embryos for 
transfer is low. Furthermore, a chosen embryo may display conflict-
ing disease risks for several different polygenic diseases, being favor-
able for one disease and at risk for another. Therefore, a balance of 
disease risks must be considered when selecting embryos [89]. An-
other important ethical question is whether it is acceptable to select 
embryos for treatable and preventable diseases. Currently, it seems 
that there are numerous technical and ethical issues that need to be 
addressed before PGT-P can be implemented. 

4. Non-invasive preimplantation genetic testing 
Traditional methods of biopsy for DNA extraction pose a risk of 

causing harm to embryos. To mitigate this risk, niPGT methods that 
utilize blastocoel fluid and spent culture medium (SCM) have been 
developed. The aspiration of blastocoel fluid is a routine procedure 
performed before the vitrification of embryos. Palini et al. [90] were 
the first to demonstrate the feasibility of PGT using cell-free DNA in 
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blastocoel fluid (BF-DNA). They found approximately 10 pg of BF-
DNA and successfully amplified several gene-specific sequences. 
They also performed array CGH using whole genome amplification 
of BF-DNA. However, array CGH results were only obtained in two 
out of five cases. Since then, numerous studies on niPGT using BF-
DNA have been reported. More recent studies have shown an in-
crease in the efficiency of whole genome amplification and the va-
lidity of array CGH results [91,92]. In addition, Zhang et al. [93] 
showed that whole genome amplification products obtained from 
BF-DNA could be used for PGT-M. 

SCM serves as an additional source of circulating free DNA for niP-
GT-A. Hammond et al. [94] found that SCM contained higher levels 
of genetic material originating from the embryo, and that the quan-
tity of DNA increased during the course of embryo culture. However, 
they concluded that PGT using DNA from SCM was not suitable due 
to the limited amount of DNA and the contamination from maternal 
DNA [94]. Subsequent reports have indicated a more promising po-
tential for niPGT-A using SCM. In instances of 24-hour culture of 
thawed blastocysts, niPGT-A proved to be more reliable than PGT-A 
following a TE biopsy [92,95,96]. The most recent studies have 
demonstrated the increased clinical applicability of niPGT-A using 
SCM. This has been achieved through the modification of culture 
methods, the enhancement of genome amplification tools, and the 
selection of embryos based on morphological grading [97-99]. 

Mosaicism remains a factor that compromises reliability, even in 
the context of niPGT-A. Many cases of mosaic chromosome aneu-
ploid or segmental aneuploid are often revealed to be false positive. 
Cai et al. [100] employed morphological assessment to select and 
transfer high-quality embryos. Their research demonstrated that over 
90% of mosaic aneuploids identified in niPGT-A were actually eu-
ploid, constituting false positives [100]. The niPGT-M method, which 
utilizes BF-DNA and SCM, appears to present more challenges than 
niPGT-A. While there have been instances of using BF-DNA and SCM 
to amplify certain targeted genes or analyze disease-associated SNPs, 
significant variations in amplification rates and concordance with TE 
biopsy results have been observed [101,102]. 

Considering the results of studies concerning niPGT to date, their 
clinical significance is challenging to evaluate due to the small sam-
ple sizes and variations in methodologies. There have been several 
clinical trials related to niPGT, and a relatively large, multicenter, dou-
ble-blind, randomized controlled trial is currently underway to assess 
the clinical relevance of niPGT [103]. 

Expanded carrier screening in reproductive 
medicine 

As NGS has become more common, it has enabled carrier testing 

for a multitude of genetic diseases simultaneously. Approximately 
2% to 4% of couples planning to conceive are at risk of having a child 
with an autosomal recessive disorder or an X-linked disorder [104]. 
Traditionally, carrier screening has been conducted on adults who 
have a family history of a specific genetic condition. However, such 
genetic conditions are typically rare, and most affected children are 
born to couples with no known family history [105]. Several scientific 
societies, including the American College of Obstetrics and Gynecol-
ogy (ACOG), the American College of Medical Genetics and Genom-
ics (ACMG), and the European Society of Human Reproduction and 
Endocrinology (ESHRE), have proposed the concept of expanded 
carrier screening (ECS). ECS is a preconception genetic screening for 
common and severe recessive diseases, intended for healthy individ-
uals with no known family history of these conditions. These societ-
ies have also suggested a list of genes to be included in the gene 
panel [106-109]. Although ECS has many advantages, such as the si-
multaneous analysis of multiple genetic diseases, cost-effectiveness, 
and the provision of reproductive planning for at-risk couples—in-
cluding the avoidance of genetic diseases through PGT—a careful 
approach is required when considering its routine implementation, 
particularly in Korea. Beyond technical limitations, such as difficulties 
in interpreting results, the potential for incidental findings, and vari-
ants of unknown significance, there are also considerations regard-
ing whether the disease or mutation is suitable for PGT. Furthermore, 
a societal consensus, including agreement within the medical com-
munity, is necessary for the implementation of ECS [110]. 

Conclusion 

As genome analysis technologies advance, they enable the simul-
taneous analysis of a spectrum from single nucleotide variants to 
large CNVs. Consequently, all types of PGT, including PGT-A, -SR, and 
-M, can be performed concurrently on a single platform. Further-
more, the application of more sophisticated genome analysis tech-
niques, such as single-cell sequencing, to PGT could simplify and en-
hance the accuracy of determining whether embryos carry dis-
ease-causing variants. As we continue to uncover more genetic 
causes and risk factors for infertility, it becomes possible to prevent 
infertility or boost the success rate of IVF through patient-specific 
treatment. Gene editing technology, utilizing the Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system, has 
the potential to correct mutations in germline cells, gametes, and 
even zygotes [111,112]. 

The genome era has greatly influenced the field of infertility, 
bringing about numerous positive effects. However, the application 
of currently developed technologies to clinical practice presents a 
host of technical and ethical issues. These challenges necessitate a 
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consensus within both the medical community and society at large. 
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