Acknowledgement
The corresponding author would thank colleagues who attended the department seminars for helpful comments on an earlier paper, on which this paper builds. This work was supported by the 2023 Inje University research grant.
References
- Andrews, D.W.K. & Monahan, J.C. (1992). An improved heteroscedasticity and autocorrelation consistent covariance matrix estimator. Econometrica, 60, 953-966. https://doi.org/10.2307/2951574
- Bai, J. & Perron, P. (2003). Computation and Analysis of Multiple Structural Change Models. Journal of Applied Econometrics, 18, 1-22. https://doi.org/10.1002/jae.659
- Bera, A. & John, S. (1983). Tests for Multivariate Normality with Pearson Alternatives. Communications in Statistics - Theory and Methods, 12, 103-117. https://doi.org/10.1080/03610928308828444
- Black, F. (1972). Capital Market Equilibrium with Restricted Borrowing. Journal of Business, 45, 444-54. https://doi.org/10.1086/295472
- Chan, J.C., Hsio, C.Y. & Fry-McKibbin, R.A. (2019). A Regime Switching Skew-Normal Model of Contagion. Studies in Nonlinear Dynamics and Econometrics, 23, 20170001.
- Chib, S. (1996). Calculating Posterior Distributions and Modal estimates in Markov Mixture Models. Journal of Econometrics, 75, 79-97. https://doi.org/10.1016/0304-4076(95)01770-4
- Chopra, M. & Mehta, C. (2022). Is the COVID-19 pandemic more contagious for the Asian stock markets? A comparison with the Asian financial, the US subprime and the Eurozone debt crisis. Journal of Asian Economics, 79, 101450.
- Doornik, J.A. & Hansen, H. (2008). An Omnibus Test for Univariate and Multivariate Normality. Oxford Bulletin of Economics and Statistics, 70, 927-939. https://doi.org/10.1111/j.1468-0084.2008.00537.x
- Forbes, K.J., & Rigobon, R. (2002). No Contagion, Only Interdependence: Measuring Stock Market Comovements. The Journal of Finance, 57, 2223-61. https://doi.org/10.1111/0022-1082.00494
- Fruhwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models, Springer, New York.
- Fry-McKibbin, R.A. & Hsiao, C.Y. (2018). Extremal Dependence and Contagion. Econometric Reviews, 37, 626-649. https://doi.org/10.1080/07474938.2015.1122270
- Fry-McKibbin, R.A., Martin, V.L. & Tang, C. (2010). A New Class of Tests of Contagion with Applications. Journal of Business and Economic Statistics, 28, 423-36. https://doi.org/10.1198/jbes.2010.06060
- Fry-McKibbin, R.A., Martin, V.L. & Tang, C. (2014). Financial Contagion and Asset Pricing. Journal of Banking & Finance, 47, 296-308. https://doi.org/10.1016/j.jbankfin.2014.05.002
- Fry-McKibbin, R.A., Hsiao, C.Y. & Martin, V.L. (2019). Joint Tests of Contagion with Applications. Quantitative Finance, 19, 473-490. https://doi.org/10.1080/14697688.2018.1475747
- Geweke. J. (1991). Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities. Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, 571-78.
- Geweke, J. (2010). Complete and Incomplete Econometric Models, Princeton University Press.
- Guidolin, M., & Tam, Y.M. (2013). A Yield Spread Perspective on the Great Financial Crisis: Break-Point Test Evidence. International Review of Financial Analysis, 26, 18-39. https://doi.org/10.1016/j.irfa.2012.05.001
- Hamilton, J.D. (1989). A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle. Econometrica, 57, 2, 357-84. https://doi.org/10.2307/1912559
- Jeffreys, H. (1961). Theory of Probability, Clarendon Press, Oxford, Third Edition.
- Kim, B. (2016). A Robustified Jarque-Bera Test for Multivariate Normality. Economics Letters, 140, 48-52. https://doi.org/10.1016/j.econlet.2016.01.007
- Kroese, D.P., Taimre, T. & Botev, Z.I. (2011). Handbook of Monte Carlo Methods, John Wiley & Sons, New York.
- Liu, J., Wu, S. & Zidek, J.V. (1997). On segmented multivariate regressions. Statistica Sinica, 7, 497-525.
- Ljung, G.M. & Box, G.E.P. (1978). On a measure of lack of fit in time series models. Biometrika, 65, 297-303. https://doi.org/10.1093/biomet/65.2.297
- Mardia, K. (1970). Measures of Multivariate Skewness and Kurtosis with Applications. Biometrika, 57, 519-530. https://doi.org/10.1093/biomet/57.3.519
- Perron, P. (1997). L'estimation de modeles avec changements structurels multiples. Actualite Economique ,73, 457-505. https://doi.org/10.7202/602236ar
- Robert, C.P. (1995). Simulation of Truncated Normal Variables. Statistics and Computing, 5, 121-125. https://doi.org/10.1007/BF00143942
- Sahu, S.K., Dey, D.K. & Branco, M.D. (2003). A New Class of Multivariate Skew Distributions with Applications to Bayesian Regression Models. The Canadian Journal of Statistics, 31, 129-150. https://doi.org/10.2307/3316064
- Yao, Y. C. (1988). Estimating the number of change-points via Schwarz' criterion. Statistics and Probability Letters, 6, 181-189. https://doi.org/10.1016/0167-7152(88)90118-6
- Zhou, M. & Shao, Y. (2014). A Powerful Test for Multivariate Normality. Journal of Applied Statistics, 41, 351-363. https://doi.org/10.1080/02664763.2013.839637