DOI QR코드

DOI QR Code

Gene encoding prolactin of red-spotted grouper, Epinephelus akaara, and its application as a molecular marker for grouper species identification

  • Bok-Ki Choi (Department of Fishery Biology, College of Fisheries Sciences, PuKyong National University) ;
  • Gyeong-Eon Noh (LED-Fishery Biology Convergence Production Research Center, PuKyong National University) ;
  • Yeo-Reum Kim (Department of Fishery Biology, College of Fisheries Sciences, PuKyong National University) ;
  • Jun-Hwan Byun (Department of Fishery Biology, College of Fisheries Sciences, PuKyong National University) ;
  • HanKyu Lim (Department of Marine & Fisheries Resources, MokPo National University) ;
  • Jong-Myoung Kim (Department of Fishery Biology, College of Fisheries Sciences, PuKyong National University)
  • Received : 2023.09.20
  • Accepted : 2024.01.24
  • Published : 2024.06.30

Abstract

Groupers are economically important species in the fishery and aquaculture industries in Asian countries. Various species of grouper, including hybrids, have been brought to market even without precise species identification. In this study, we analyzed the structure and expression profile of the gene encoding prolactin (PRL) in the red-spotted grouper Epinephelus akaara based on genomic DNA and cDNA templates. The results showed that the PRL gene consists of five exons encoding an open reading frame of 212 amino acids, including a putative signal peptide of 24 amino acids and a mature structural protein of 188 amino acids. It showed amino acid identities of 99% with Epinephelus coioides, 83% with Amphiprion melanopus, 82% with Acanthopagrus schlegelii, 75% with Oreochromis niloticus, 70% with Coregonus autumnalis, and 67% with Oncorhynchus mykiss, indicating its closer similarity to E. coioides and other groupers but marked distinction from non-teleost PRLs. PRL mRNA expression was detected mostly in the brain, including the pituitary gland, with little expression in other tissues. While the 5-exon structure of the PRL gene of red-spotted grouper and the exon sizes were conserved, the sizes of the introns, particularly the first intron, were markedly different among the grouper species. To examine whether these differences can be used to distinguish groupers of similar phenotypes, exon-primed intron-crossing analysis was carried out for various commercially important grouper species. The results showed clear differences in size of the amplified fragment encompassing the first intron of the PRL gene, indicating that this method could be used to develop species-specific markers capable of discriminating between grouper species and their hybrids at the molecular level.

Keywords

Acknowledgement

This research was supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (20220572). JK was also supported by the Pukyong National University Research Fund in 2022.

References

  1. Astola A, Ortiz M, Calduch-Giner JA, Perez-Sanchez J, Valdivia MM. Isolation of Sparus auratus prolactin gene and activity of the cis-acting regulatory elements. Gen Comp Endocrinol. 2003;134:57-61. https://doi.org/10.1016/S0016-6480(03)00214-4
  2. Breves JP, Popp EE, Rothenberg EF, Rosenstein CW, Maffett KM, Guertin RR. Osmoregulatory actions of prolactin in the gastrointestinal tract of fishes. General and Comparative Endocrinology. 2020;113589.
  3. Chang YS, Huang FL, Lo TB. Molecular cloning of silver carp and bighead carp prolactin. Gen Comp Endocrinol. 1992;87:260-5. https://doi.org/10.1016/0016-6480(92)90030-N
  4. Chang YJ, Min BH, Choi CY. Black porgy (Acanthopagrus schlegeli) prolactin cDNA sequence: mRNA expression and blood physiological responses during freshwater acclimation. Comp Biochem Physiol B Biochem Mol Biol. 2007;147:122-8. https://doi.org/10.1016/j.cbpb.2007.01.006
  5. Chao SC, Pan FM, Chang WC. Nucleotide sequence of carp prolactin cDNA. Nucleic Acids Res. 1988;16:9350.
  6. Cooke NE, Coit D, Shine J, Baxter JD, Martial JA. Human prolactin: cDNA structural analysis and evolutionary comparisons. J Biol Chem. 1981;256:4006-16. https://doi.org/10.1016/S0021-9258(19)69558-X
  7. Eschmeyer WN, Fricke RL, van der Laan R. Genera in the family Serranidae. Catalog of Fishes. San Francisco, CA: California Academy of Sciences; 2010.
  8. Gong N, Ferreira-Martins D, Norstog JL, McCormick SD, Sheridan MA. Discovery of prolactin-like in lamprey: role in osmoregulation and new insight into the evolution of the growth hormone/prolactin family. Proc Natl Acad Sci USA. 2022;119:e2212196119.
  9. Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc R Soc Lond B. 2003;270:313-21. https://doi.org/10.1098/rspb.2002.2218
  10. Inoue H, Nojima H, Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990;96:23-8. https://doi.org/10.1016/0378-1119(90)90336-P
  11. Kang MJ, Noh CH, Kim JH, Park JY, Park DW. The embryonic development and hatchability of two hybrids with giant grouper female: giant grouper ♀×kelp grouper ♂ and giant grouper ♀×red-spotted grouper ♂. Korean J Fish Aquat Sci. 2020;53:557-62.
  12. Lee CH, Hur SW, Kim BH, Soyano K, Lee YD. Induced maturation and fertilized egg production of the red-spotted grouper, Epinephelus akaara, using adaptive physiology of photoperiod and water temperature. Aquac Res. 2020;51:2084-90. https://doi.org/10.1111/are.14559
  13. Lee KM, Kaneko T, Aida K. Prolactin and prolactin receptor expressions in a marine teleost, pufferfish Takifugu rubripes. Gen Comp Endocrinol. 2006;146:318-28. https://doi.org/10.1016/j.ygcen.2005.12.003
  14. Li C, Riethoven JJM, Ma L. Exon-primed intron-crossing (EPIC) markers for non-model teleost fishes. Evol Biol. 2010;10:90.
  15. Lim SG, Han SB, Lim HK. Effects of salinity on the growth, survival and stress responses of red spotted grouper Epinesphelus akaara and hybrid grouper E. akaara ♀ × E. lanceolatus ♂. Korean J Fish Aquat Sci. 2016;49:612-9.
  16. Mai W, Liu P, Chen H, Zhou Y. Cloning and immune characterization of the c-type lysozyme gene in red-spotted grouper, Epinephelus akaara. Fish Shellfish Immunol. 2014;36:305-14. https://doi.org/10.1016/j.fsi.2013.11.002
  17. Manzon LA. The role of prolactin in fish osmoregulation: a review. Gen Comp Endocrinol. 2002;125:291-310. https://doi.org/10.1006/gcen.2001.7746
  18. Monaghan MT, Balke M, Gregory TR, Vogler AP. DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philos Trans R Soc Lond B Biol Sci. 2005;360:1925-33. https://doi.org/10.1098/rstb.2005.1724
  19. Noh CH. Hatchability of fertilized eggs from grouper (subfamily Epinephelinae) hybrids in Korea: a mini review for selection of commercially promising cross combinations. Korean J Fish Aquat Sci. 2020;53:479-85. https://doi.org/10.5657/KFAS.2020.0479
  20. Noh GE, Lim HK, Kim JM. Characterization of genes encoding prolactin and prolactin receptors in starry flounder Platichthys stellatus and their expression upon acclimation to freshwater. Fish Physiol Biochem. 2013a;39:263-75. https://doi.org/10.1007/s10695-012-9697-y
  21. Noh GE, Rho S, Chang YJ, Min BH, Kim JM. Gene encoding prolactin in cinnamon clownfish Amphiprion melanopus and its expression upon acclimation to low salinities. Aquat Biosyst. 2013b;9:1.
  22. Park YC, Jung YH, Kim MR, Shin JH, Kim KH, Lee JH, et al. Development of detection method for Niphon spinosus, Epinephelus bruneus, and Epinephelus septemfasciatus using 16S rRNA gene. Korean J Food Sci Technol. 2013;45:1-7. https://doi.org/10.9721/KJFST.2013.45.1.1
  23. Querat B, Cardinaud B, Hardy A, Vidal B, D'Angelo G. Sequence and regulation of European eel prolactin mRNA. Mol Cell Endocrinol. 1994;102:151-60. https://doi.org/10.1016/0303-7207(94)90108-2
  24. Rentier-Delrue F, Swennen D, Prunet P, Lion M, Martial JA. Tilapia prolactin: molecular cloning of two cDNAs and expression in Escherichia coli. DNA. 1989;8:261-70. https://doi.org/10.1089/dna.1.1989.8.261
  25. Rimmer MA, Glamuzina B. A review of grouper (family Serranidae: subfamily Epinephelinae) aquaculture from a sustainability science perspective. Rev Aquac. 2019;11:58-87. https://doi.org/10.1111/raq.12226
  26. Sadovy Y, Liu M, Amorim P, Choat JH, Law C, Ma K, et al. Epinephelus akaara. The IUCN red list of threatened species. Gland: International Union for Conservation of Nature (IUCN); 2018.
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-25.
  28. Si Y, Li H, Gong X, Bao B. Isolation of prolactin gene and its differential expression during metamorphosis involving eye migration of Japanese flounder Paralichthys olivaceus. Gene. 2021;780:145522.
  29. Song S, Trinh KY, Hew CL, Hwang SJ, Belkhode S, Idler DR. Molecular cloning and expression of salmon prolactin cDNA. Eur J Biochem. 1988;172:279-85. https://doi.org/10.1111/j.1432-1033.1988.tb13884.x
  30. Swennen D, Poncelet AC, Sekkali B, Rentier-Delrue F, Martial JA, Belayew A. Structure of the tilapia (Oreochromis mossambicus) prolactin I gene. DNA Cell Biol. 1992;11:673-84. https://doi.org/10.1089/dna.1992.11.673
  31. Varma S, Kwok S, Ebner KE. Cloning and nucleotide sequence of ovine prolactin cDNA. Gene. 1989;77:349-59. https://doi.org/10.1016/0378-1119(89)90083-8
  32. Xiong F, Chin RA, Hew CL. A gene encoding chinook salmon (Oncorhynchus tschawytscha) prolactin: gene structure and potential cis-acting regulatory elements. Mol Mar Biol Biotechnol. 1992;1:155-64.
  33. Yamaguchi K, Specker JL, King DS, Yokoo Y, Nishioka RS, Hirano T, et al. Complete amino acid sequences of a pair of fish (tilapia) prolactins, tPRL177 and tPRL188. J Biol Chem. 1988;263:9113-21. https://doi.org/10.1016/S0021-9258(19)76515-6
  34. Zhang W, Tian J, Zhang L, Zhang Y, Li X, Lin H. cDNA sequence and spatio-temporal expression of prolactin in the orange-spotted grouper, Epinephelus coioides. Gen Comp Endocrinol. 2004;136:134-42. https://doi.org/10.1016/j.ygcen.2003.12.001