DOI QR코드

DOI QR Code

A study on the multi-frequency acoustic target strength of krill using a stochastic distorted-wave born approximation (SDWBA) model

  • Wuju Son (Division of Ocean & Atmosphere Sciences, Korea Polar Research Institute) ;
  • Wooseok Oh (Institute of Low-Carbon Marine Production Technology, Pukyong National University) ;
  • Hyoung Sul La (Division of Ocean & Atmosphere Sciences, Korea Polar Research Institute) ;
  • Kyounghoon Lee (Division of Marine Production System Management, Pukyong National University)
  • Received : 2023.10.14
  • Accepted : 2023.12.26
  • Published : 2024.04.30

Abstract

We examined the dB difference in target strength at multiple frequencies (ΔTS) for the identification of Antarctic krill (Euphausia superba) and ice krill (Euphausia crystallorophias) using a stochastic distorted-wave Born approximation model. Our investigation focused on ΔTS patterns at multiple frequencies in relation to size, along with key acoustic properties influencing TS, including density and sound speed contrast, fatness, and orientation. The findings revealed that the orientation and fatness significantly affect the ΔTS patterns. The results provide insight into the importance of the multi-frequency technique for estimating krill biomass and their ecological interactions with environmental features in the Southern Ocean.

Keywords

Acknowledgement

This research was supported by the Korea Institute of Marine Science & Technology Promotion (KIMST) through funding provided by the Ministry of Oceans and Fisheries (KIMST-20220547, PM24060), and by the Korea Polar Research Institute (KOPRI) through a grant funded by the Ministry of Oceans and Fisheries (KOPRI PE24110).

References

  1. Calise L, Skaret G. Sensitivity investigation of the SDWBA Antarctic krill target strength model to fatness, material contrasts and orientation. CCAMLR Sci. 2011;18:97-122.
  2. Campbell RW, Dower JF. Role of lipids in the maintenance of neutral buoyancy by zooplankton. Mar Ecol iProg Ser. 2003;263:93-9. https://doi.org/10.3354/meps263093
  3. Conti SG, Demer DA. Improved parameterization of the SDWBA for estimating krill target strength. ICES J Mar Sci. 2006;63:928-35. https://doi.org/10.1016/j.icesjms.2006.02.007
  4. Chu D, Wiebe PH. Measurements of sound-speed and density contrasts of zooplankton in Antarctic waters. ICES J Mar Sci. 2005;62:818-31. https://doi.org/10.1016/j.icesjms.2004.12.020
  5. Everson IK. Biology, ecology, and fisheries. Oxford: Blackwell Science; 2000.
  6. Foote KG. Speed of sound in Euphausia superba. J Acoust Soc Am. 1990;87:1405-8. https://doi.org/10.1121/1.399436
  7. Foote KG, Everson I, Walkins JL, Bone DG. Target strengths of Antarctic krill (Euphausia superba) at 38 and 120 kHz. J Acoust Soc Am. 1990;87:16-24. https://doi.org/10.1121/1.399282
  8. Forman KA, Warren JD. Variability in the density and soundspeed of coastal zooplankton and nekton. ICES J Mar Sci. 2010;67:10-8. https://doi.org/10.1093/icesjms/fsp217
  9. Kang M, Furusawa M, Miyashita K. Effective and accurate use of difference in mean volume backscattering strength to identify fish and plankton. ICES J Mar Sci. 2002;59:794-804. https://doi.org/10.1006/jmsc.2002.1229
  10. La HS, Lee H, Fielding S, Kang D, Ha HK, Atkinson A, et al. High density of ice krill (Euphausia crystallorophias) in the Amundsen sea coastal polynya, Antarctica. Deep Sea Res I Oceanogr Res Pap. 2015a;95:75-84. https://doi.org/10.1016/j.dsr.2014.09.002
  11. La HS, Lee H, Kang D, Lee SH, Shin HC. Ex situ echo sounder target strengths of ice krill Euphausia crystallorophias. Chin J Oceanol Limnol. 2015b;33:802-8. https://doi.org/10.1007/s00343-015-4064-3
  12. Lawson GL, Wiebe PH, Ashjian CJ, Chu D, Stanton TK. Improved parametrization of Antarctic krill target strength models. J Acoust Soc Am. 2006;119:232-42. https://doi.org/10.1121/1.2141229
  13. Lawson GL, Wiebe PH, Ashjian CJ, Stanton TK. Euphausiid distribution along the Western Antarctic peninsula-part B: distribution of euphausiid aggregations and biomass, and associations with environmental features. Deep Sea Res II Top Stud Oceanogr. 2008;55:432-54. https://doi.org/10.1016/j.dsr2.2007.11.014
  14. Pena M, Calise L. Use of SDWBA predictions for acoustic volume backscattering and the Self-Organizing Map to discern frequencies identifying Meganyctiphanes norvegica from mesopelagic fish species. Deep Sea Res 1 Oceanogr Res Pap. 2016;110:50-64. https://doi.org/10.1016/j.dsr.2016.01.006
  15. Sala A, Azzali M, Russo A. Krill of the Ross Sea: distribution, abundance and demography of Euphausia superba and Euphausia crystallorophias during the Italian Antarctic expedition (January-February 2000). Sci Mar. 2002;66:123-33. https://doi.org/10.3989/scimar.2002.66n2123
  16. SC-CAMLR. Report of the fifth meeting of the subgroup on acoustic survey and analysis methods. In: Proceedings of the Report of the Twenty-Ninth Meeting of the Scientific Committee (sc-camlrxXIX); 2010; Hobart, Australia.
  17. SC-CAMLR. Report of the first meeting of the subgroup on acoustic survey and analysis method (SGASAM). In: Proceedings of the Report of the Twenty-Fourth Meeting of the Scientific Committee (SC-CAMLRXXIV/BG/3); 2005; Hobart, Australia.
  18. Stanton TK, Chu D. Review and recommendations for the modelling of acoustic scattering by fluid-like elongated zooplankton: euphausiids and copepods. ICES J Mar Sci. 2000;57:793-807. https://doi.org/10.1006/jmsc.1999.0517
  19. Watkins JL, Hewitt R, Naganobu M, Sushin V. The CCAMLR 2000 survey: a multinational, multi-ship biological oceanography survey of the Atlantic sector of the Southern Ocean. Deep Sea Res II Top Stud Oceanogr. 2004;51:1205-13. https://doi.org/10.1016/S0967-0645(04)00075-X