DOI QR코드

DOI QR Code

동해 심해환경에서 잔향음에 의한 양상태 탐지성능 영향 모의 및 분석

Simulation and analysis of the effects of bistatic sonar detection performance induced by reverberation in the East Sea

  • 양원준 (한양대학교 해양융합과학과) ;
  • 이대혁 (한양대학교 해양융합과학과) ;
  • 김지섭 (한양대학교 해양융합과학과) ;
  • 설호석 (한양대학교 해양융합과학과) ;
  • 손수욱 (국방과학연구소) ;
  • 권혁종 (국방기술진흥연구소) ;
  • 최지웅 (한양대학교 ERICA 해양융합공학과)
  • 투고 : 2024.06.05
  • 심사 : 2024.06.10
  • 발행 : 2024.07.31

초록

소나를 이용한 수중 표적 탐지를 위해서는 해양환경 및 소나 특성이 반영된 탐지성능 분석이 수행되어야 한다. 수동 및 단상태 소나의 탐지성능 모델링은 해양환경을 고려하더라도 비교적 신속하게 수행될 수 있다. 하지만 양상태 및 다중상태 소나의 경우 수동 및 단상태 소나에 비해 계산 측면에서 높은 복잡성과 연산량이 요구되기 때문에 국내외에서는 음속구조나 해저지형과 같은 해양환경을 고려하지 않거나 단순화된 형태로 양상태 및 다중상태 탐지성능 분석이 수행되고 있다. 따라서 본 연구에서는 동해 울릉분지 해역에서의 음파전달 특성 분석을 통해 잔향음과 해양환경이 양상태 탐지 성능에 미치는 영향을 분석하였다. 수평 방위 해상도 변화 및 소음제한환경 가정 여부에 따른 탐지성능 모델링을 수행하였다. 이로부터 소나운용 수심이 최소음속층에 가까워질수록 해저지형의 영향이 줄어들며 잔향음 제한환경은 비교적 근거리에서만 형성된다는 것을 관찰하였다. 이러한 경향은 단순화하여 계산한 탐지성능 모델링의 결과와 정교하게 계산된 양상태 탐지성능 모델링 결과의 비교를 통해서도 확인 가능하였다.

To detect underwater targets using sonar, sonar performance analysis that reflects the ocean environment and sonar characteristics must be performed. Sonar performance modeling of passive and monostatic sonar can be performed relatively quickly even considering the ocean environment. However, since bistatic and multistatic sonar performance modeling require higher computational complexity and much more time than passive or monostatic sonar cases, they have been performed by simplifying or not considering the ocean environment. In thisstudy, the effects of reverberation and ocean environment in bistatic sonar performance were analyzed using the bistatic reverberation modeling in the Ulleung Basin of the East Sea. As the sonar operation depth approaches the sound channel axis, the influence of the bathymetry on sound propagation is reduced, and the reverberation limited environment is formed only at short distances. Finally, it was confirmed that similar trends appeared through comparison between the simplified and elaborately calculated sonar performance modeling results.

키워드

과제정보

이 논문은 2024년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임(관리번호: UD210004DD).

참고문헌

  1. R. Lilley, "Recapture wide-area antisubmarine warfare," J. Proceedings magazine, 140/6/1336, 44-50 (2014).
  2. S. Kim, W. Kim, J. W. Choi, Y. J. Yoon, and J.-S. Park, "Optimal deployment of sensor nodes based on performance surface of acoustic detection" (in Korean), J. KIMS Technol. 18, 538-547 (2015).
  3. S. Kimand J. W. Choi, "Optimal deployment ofsensor nodes based on performance surface of underwater acoustic communication," Sensors, 17, 2389 (2017).
  4. S. Kim and J. W. Choi, "Optimal deployment of vector sensor nodesin underwater acoustic sensor networks," Sensors, 19, 2885 (2019).
  5. S. An, "Optimal depth for dipping sonar system using optimization algorithm" (in Korean), J. Acoust. Soc. Kr. 39, 541-548 (2020).
  6. M. P. Fewell and S. Ozols, "Simple detection-performance analysis of multistatic sonar for anti-submarine warfare," DSTO Tech. Rep., 2011.
  7. E. M. Craparo and M. Karatas, "A method for placing sources in multistatic sonar networks," Naval Postgraduate School Monterey United States, Tech. Rep., 2018.
  8. E. Craparo and M. Karatas, "Optimalsource placement for point coverage in active multistatic sonar networks," Naval Research Logistics (NRL), 67, 63-74 (2020). https://doi.org/10.1002/nav.21877
  9. R. Oh, J. W. Choi, and W. -K. Kim, "A study on the operation condition of integrated sonar system" (in Korean), Proc. The KIMS Technol. Conf. 422 (2018).
  10. S.-U. Son, R. Oh, J. W. Choi, and J.-S. Park, "Development and validation of a performance analysis model for bistatc sonar" (in Korean), Proc. The KIMS Technol. Conf. 374 (2019).
  11. S.-U. Son, W.-K. Kim, H. S. Bae, and J.-S. Park, "Assessment of acoustic detection performance for a deployment of bi-static sonar" (in Korean), J. Acoust. Soc. Kr. 41, 419-425 (2022).
  12. D. H. Lee, W. Yang, J. S. Kim, H. Sul, J. W. Choi, and S.-U. Son, "Estimation of underwater acoustic uncertainty based on the ocean experimental data measured in the East Sea and its application to predict sonar detection probability" (in Korean), J. Acoust. Soc. Kr. 43, 285-292 (2024).
  13. W. Yang, D. Kim, D. H. Lee, J. W. Choi, and S.-U. Son, "Sonar detection performance analysis considering bistatic target strength" (in Korean), J. Acoust. Soc. Kr. 43, 305-313 (2024).
  14. J. S. Kim, D. H. Lee, W. Yang, Y. S. Kim, J. W. Choi, H. Kwon, J. -Y. Park, S.-U. Son, H. S. Bae, and J. -S. Park, "Optimal deployment of bistatic sonar using PSO algorithm" (in Korean), J. Acoust. Soc. Kr. 43, 437-444 (2024).
  15. C. Amante and B. W. Eakins, "Etopo1 arc-minute global relief model : procedures, data sources and analysis," NOAA Technical Memorandum, NGDC (National Geophysical Data Center), Rep., 2009.
  16. M. R. Carnes, "Description and evaluation of GDEM-V 3.0," Nav. Res. Lab., Rep., 2009.
  17. R. J. Urick, Principles of Underwater Sound 3rd ed. (McGraw-Hill, New York, 1983), pp. 17-30, 164-168.
  18. C. H. Harrison, "SUPREMO : A multistatic sonar performance model," NATO SACLANT Undersea Research Centre. SM-396, Rep., 2002.
  19. G. M. Wenz, "Acoustic ambient noise in the ocean : Spectra and sources," J. Acoust. Soc. Am. 34, 1936-1956 (1962). https://doi.org/10.1121/1.1909155
  20. E. J. Yun, Optimal deployment of multi-static sonobuoys in fixed-wing aircraft using genetic algorithm, (Master's thesis, University of Hanyang, 2022).
  21. R. E. Delgado, B. W. Northridge, and L. S. Ladner, "A range-dependent transmission loss database application: countermeasures assessmentsimulation at NRaD," Center for Environmental Acoustics NRL/FR, Rep., 1993.
  22. F. C. Newman, A. C. Biondo, M. D. Mandelberg, C. C. Matthews, and J. R. Rottier, "Enhancing realism in computer simulations: environmental effects," Johns Hopkins APL technical digest, Rep., 2002.