DOI QR코드

DOI QR Code

특이값 제거 기법을 적용한 수중 이동체의 음향 거리 추정

Acoustic range estimation of underwater vehicle with outlier elimination

  • 투고 : 2023.09.14
  • 심사 : 2024.03.18
  • 발행 : 2024.07.31

초록

수중 이동체의 방사소음을 측정하는 경우 이동체와 수신기 사이의 거리 정보가 중요한 요소이지만 수중에서는 Global Positioning System(GPS)를 사용할 수 없기 때문에 대체 수단이 필요하다. 대체 수단으로써 별도의 음향신호를 이용하여 도달 시간, 도달 시간 차 및 도달 주파수 차 등을 추정하여 거리를 측정한다. 하지만 채널 환경에 의해 오류가 발생하며, 이러한 특이값들은 연속적으로 거리를 측정함에 있어서 장애 요인이 된다. 본 논문에서는 거리 정보를 측정하는 과정에서 발생한 특이값들을 제거하기 위하여 사후 처리로써 V-곡선 형태의 함수로 곡선 적합하여 오류를 감소시키는 방법을 제안한다. 제안한 방법의 성능검증을 위해 모의, 호수 및 해상실험을 수행하였다. 호수실험 결과에서는 Root Mean Square Error(RMSE) 관점에서 약 85 % 정도로 거리 추정 오차가 감소하였다.

When measuring the radiated noise of an underwater vehicle, the range information between the vehicle and the receiver is an important factor, but since Global Positioning System (GPS) is not available in underwater, an alternative method is needed. As an alternative, the range is measured by estimating the arrival time, arrival time difference, and arrival frequency difference using a separate acoustic signal. However, errors occur due to the channel environment, and these outliers become obstacles in continuously measuring range. In this paper, we propose a method to reduce errors by curve fitting with a function in the form of a V-curve as a post-processing to remove outliers that occurred in the process of measuring range information. Simulation, lake and sea trials were conducted to verify the performance of the proposed method. In the results of the lake trial, the range estimation error was reduced by about 85 % from the Root Mean Square Error (RMSE) point of view.

키워드

과제정보

본 연구는 국방과학연구소의 연구비 지원(과제번호: UE230529UD)으로 이루어졌습니다.

참고문헌

  1. J. U. Park, G. H. Kim, J. W. Seok, and J. P. Hong, "High-resolution range and velocity estimation method based on generalized sinusoidal frequency modulation for high-speed underwater vehicle detection" (in Korean), J. Acoust. Soc. Kr. 42, 320-328 (2023).
  2. X. Li, Z. D. Deng, L. T. Rauchenstein, and T. J. Carlson, "Source-localization algorithms and applications using time of arrival and time difference of arrival measurements,"Review of Scientific Instrument, 87, 1-12 (2016). https://doi.org/10.1063/1.4947001
  3. S. W. Hyung, M. H. Park, S. B. Hwang, and K. S. Bae, "Estimation of target distance based on fractional fourier transform analysis of active sonar linear frequency modulation signals" (in Korean), J. Acoust. Soc. Kr. 35, 8-15 (2016). https://doi.org/10.7776/ASK.2016.35.1.008
  4. Guideline for underwater radiated noise, Korean register, Available online: https://www.krs.co.kr/KRRules/KRRules2024/KRRulesK.html, (Last viewed June 28, 2024).
  5. G. Shen, R. Zetik, H. Yan, O. Hirsch, and R.S. Thoma, "Time of arrival estimation for range-based localization in UWB sensor networks," Proc. IEEE International Conference on Ultra-Wideband, 1-4 (2010).
  6. R. K. Otines, "Frequency difference of arrival," IEEE Trans. Acoust. Speech Signal Process, 37, 306-308 (1989). https://doi.org/10.1109/29.21696
  7. W. J. Park, K. M. Kim, M. S. Han, and J. Y. Choi, "Range estimation of underwater acoustic moving source using Doppler frequency map" (in Korean), J. Acoust. Soc. Kr. 36, 413-418 (2017).
  8. J. Vaganay, J.J. Leonard, and J. G. Bellingham, "Outlier rejection for autonomous acoustic navigation," Proc. IEEE ICRA, 2174-2181 (1996).
  9. G. Agamennoni, J. Nieto, and E. MNebot, "An outlier-robust Kalman filter," Proc. 2011 IEEE ICRA, 1551-1558 (2011).
  10. S. Zair, S. L. Hegarat-Mascle, and E. Seignez, "Outlier detection in GNSSpseudo-range/dopplermeasurements for robust localization," J. Sensors, 16, 1-22 (2016). https://doi.org/10.1109/JSEN.2015.2493739
  11. M. Morgado, P. Oliveira, and C. Silvestre, "Robust outliers detection and classification for USBL underwater positioning systems," Proc. 11th Portuguese Conference on Automatic Control, 555-565 (2014).
  12. A. M. Lekkas, M. Candeloro, and I. Schjolberg, "Outlier rejection in underwater acoustic position measurements based on prediction errors," ScienceDirect, 48, 82-87 (2015). https://doi.org/10.1016/j.ifacol.2015.06.014
  13. S. Hassan, H. Byun, and J. Kim, "Iterative smoothing and outlier detection for underwater navigation," ArXiv abs/2109.14220 (2021)
  14. M. A. Fischler and R. C. Bolles, "Random sample consensus : A paradigm for model fitting with application to image analysis and automated cartography," Communications of the ACM, 24, 381-395 (1981). https://doi.org/10.1145/358669.358692
  15. C. Luo and J. H. McClellan, "Robust geolocation estimation using adaptive RANSAC algorithm," Proc. IEEE ICASSP, 3862-3865 (2010)
  16. Finding Perfect Focus with V-Curve Fitting Based on a Hyperbolic Function, https://www.lost-infinity.com/v-curve-fitting-with-a-hyperbolic-function/, (Last viewed August 24, 2023).