DOI QR코드

DOI QR Code

Impact of peripheral blood mononuclear cells preconditioned by activated platelet supernatant in managing gastric mucosal damage induced by zinc oxide nanoparticles in rats

  • Darwish Badran (Department of Anatomy and Histology, Faculty of Medicine, the University of Jordan and Ibn Sina University for Medical Sciences) ;
  • Ayman El-Baz El-Agroudy (Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Sciences) ;
  • Amira Adly Kassab (Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Sciences) ;
  • Khaled Saad El-Bayoumi (Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Sciences) ;
  • Zienab Helmy Eldken (Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Sciences) ;
  • Noha Ramadan Mohammed Elswaidy (Department of Histology and Cell Biology, Faculty of Medicine, Tanta University)
  • Received : 2023.08.25
  • Accepted : 2023.10.31
  • Published : 2024.03.31

Abstract

The world has witnessed tremendous advancements in nano-base applications. Zinc oxide nanoparticles (ZON) are widely used in food industry and medicine. Although their application is of important value, they may cause toxicity to body tissues. Peripheral blood mononuclear cells (PBMCs) proved its efficacy in tissue regeneration especially when it is preconditioned by activated platelet supernatant (APS). The aim of this study is to evaluate the effect of ZON on the gastric mucosa and the therapeutic role of the PBMCs preconditioned by APS in rats. Ten rats were donors and fifty rats were recipients. The recipients were divided into; control group, ZON group (10 mg/kg/day orally for five days) and preconditioned PBMCs group (1×107 once intravenously 24 hours after ZON). Gastric specimens were processed for histological, immunohistochemical, biochemical and quantitative real-time polymerase chain reaction studies. ZON group showed marked structural changes in the gastric mucosa. There was desquamation or deep ulceration of the epithelium. Cytoplasmic vacuoles and pyknotic nuclei were in glandular cells. Reduced proliferating cell nuclear antigen and increased tumor necrosis factor-α were in epithelial cells. There were significant elevation in malondialdahyde and reduction in glutathione, superoxide dismutase, and catalase. Enhancement in mRNA expression of nuclear factor kappa-B and cyclooxygenase-2 was detected. The preconditioned PBMCs group showed significant improvement of all parameters. So, ZON had cytotoxic effects on the gastric mucosa and the preconditioned PBMCs had a therapeutic effect on gastric mucosal damage after ZON.

Keywords

References

  1. Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, Mitra S, Roy A, Emran TB, Cavalu S. Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials (Basel) 2022;15:2160.
  2. Alotaibi B, Negm WA, Elekhnawy E, El-Masry TA, Elharty ME, Saleh A, Abdelkader DH, Mokhtar FA. Antibacterial activity of nano zinc oxide green-synthesised from Gardenia thailandica triveng. Leaves against Pseudomonas aeruginosa clinical isolates: in vitro and in vivo study. Artif Cells Nanomed Biotechnol 2022;50:96-106.
  3. Motelica L, Oprea OC, Vasile BS, Ficai A, Ficai D, Andronescu E, Holban AM. Antibacterial activity of solvothermal obtained ZnO nanoparticles with different morphology and photocatalytic activity against a dye mixture: methylene blue, rhodamine B and methyl orange. Int J Mol Sci 2023;24:5677.
  4. Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers (Basel) 2021;13:4570.
  5. Hu C, Du W. Zinc oxide nanoparticles (ZnO NPs) combined with cisplatin and gemcitabine inhibits tumor activity of NSCLC cells. Aging (Albany NY) 2020;12:25767-77.
  6. Abdelkader DH, Negm WA, Elekhnawy E, Eliwa D, Aldosari BN, Almurshedi AS. Zinc oxide nanoparticles as potential delivery carrier: green synthesis by Aspergillus niger endophytic fungus, characterization, and in vitro/in vivo antibacterial activity. Pharmaceuticals (Basel) 2022;15:1057.
  7. Kuhlbusch TAJ, Wijnhoven SWP, Haase A. Nanomaterial exposures for worker, consumer and the general public. Nanoimpact 2018;1:11-25.
  8. Mendoza-Milla C, Macias Macias FI, Velazquez Delgado KA, Herrera Rodriguez MA, Colin-Val Z, Ramos-Godinez MDP, Cano-Martinez A, Vega-Miranda A, Robledo-Cadena DX, Delgado-Buenrostro NL, Chirino YI, Flores-Flores JO, Lopez-Marure R. Zinc oxide nanoparticles induce toxicity in H9c2 rat cardiomyoblasts. Int J Mol Sci 2022;23:12940.
  9. Almansour MI, Alferah MA, Shraideh ZA, Jarrar BM. Zinc oxide nanoparticles hepatotoxicity: histological and histochemical study. Environ Toxicol Pharmacol 2017;51:124-30.
  10. Dkhil MA, Diab MSM, Aljawdah HMA, Murshed M, Hafiz TA, Al-Quraishy S, Bauomy AA. Neuro-biochemical changes induced by zinc oxide nanoparticles. Saudi J Biol Sci 2020;27:2863-7.
  11. Rafiee Z, Khorsandi L, Nejad-Dehbashi F. Protective effect of Zingerone against mouse testicular damage induced by zinc oxide nanoparticles. Environ Sci Pollut Res Int 2019;26:25814-24.
  12. Pinho AR, Rebelo S, Pereira ML. The impact of zinc oxide nanoparticles on male (in)fertility. Materials (Basel) 2020;13:849.
  13. Mohammed HAL, El Shakaa NM, Bahaa N, Zeid AAA. A histological study on the acute effect of zinc oxide nanoparticles administered by different routes on albino rat lung. J Microsc Ultrastruct 2021;10:72-80.
  14. Mawed SA, Marini C, Alagawany M, Farag MR, Reda RM, El-Saadony MT, Elhady WM, Magi GE, Di Cerbo A, El-Nagar WG. Zinc oxide nanoparticles (ZnO-NPs) suppress fertility by activating autophagy, apoptosis, and oxidative stress in the developing oocytes of female zebrafish. Antioxidants (Basel) 2022;11:1567.
  15. Ramadan AG, Yassein AAM, Eissa EA, Mahmoud MS, Hassan GM. Biochemical and histopathological alterations induced by subchronic exposure to zinc oxide nanoparticle in male rats and assessment of its genotoxicicty. J Umm Al-Qura Univ Appl Sci 2022;8:41-9.
  16. Li Y, Li F, Zhang L, Zhang C, Peng H, Lan F, Peng S, Liu C, Guo J. Zinc oxide nanoparticles induce mitochondrial biogenesis impairment and cardiac dysfunction in human iPSC-derived cardiomyocytes. Int J Nanomedicine 2020;15:2669-83.
  17. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008;2:2121-34. Erratum in: ACS Nano 2008;2:2592.
  18. Liu Z, Lv X, Xu L, Liu X, Zhu X, Song E, Song Y. Zinc oxide nanoparticles effectively regulate autophagic cell death by activating autophagosome formation and interfering with their maturation. Part Fibre Toxicol 2020;17:46.
  19. Feng Y, Min L, Zhang W, Liu J, Hou Z, Chu M, Li L, Shen W, Zhao Y, Zhang H. Zinc oxide nanoparticles influence microflora in ileal digesta and correlate well with blood metabolites. Front Microbiol 2017;8:992.
  20. Youn SM, Choi SJ. Food additive zinc oxide nanoparticles: dissolution, interaction, fate, cytotoxicity, and oral toxicity. Int J Mol Sci 2022;23:6074.
  21. Liao C, Jin Y, Li Y, Tjong SC. Interactions of zinc oxide nanostructures with mammalian cells: cytotoxicity and photocatalytic toxicity. Int J Mol Sci 2020;21:6305.
  22. Chang YN, Zhang M, Xia L, Zhang J, Xing G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials (Basel) 2012;5:2850-71.
  23. Kim YR, Park JI, Lee EJ, Park SH, Seong NW, Kim JH, Kim GY, Meang EH, Hong JS, Kim SH, Koh SB, Kim MS, Kim CS, Kim SK, Son SW, Seo YR, Kang BH, Han BS, An SS, Yun HI, Kim MK. Toxicity of 100 nm zinc oxide nanoparticles: a report of 90-day repeated oral administration in Sprague Dawley rats. Int J Nanomedicine 2014;9 Suppl 2:109-26.
  24. Abdallah EAA, Omran BHF, Abdelwahab MM. A study of subchronic genotoxic effects of zinc oxide nanoparticles and protective role of vitamin E on the stomach and pancreas in adult albino rats. Egypt J Forensic Sci Appl Toxicol 2018;18:25-41.
  25. Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022;7:272.
  26. El-Kadiry AE, Rafei M, Shammaa R. Cell therapy: types, regulation, and clinical benefits. Front Med (Lausanne) 2021;8:756029.
  27. Abo-Elyazed AA, Kassab AA, Elbakary NAM, Abo-Raya AA, Shalaby NM. The therapeutic effect of activated platelet supernatant-primed mobilized peripheral blood mononuclear cells on experimentally induced ulcers in the ileum of of adult male albino rat: histological and immunohistochemical study. Egypt J Histol 2022. [In press].
  28. Sen P, Kemppainen E, Oresic M. Perspectives on systems modeling of human peripheral blood mononuclear cells. Front Mol Biosci 2018;4:96.
  29. Supartono B, Farida S, Suhandono S, Yusuf AA. Safety evaluation of human peripheral blood mononuclear cells in naive rats:a chronic toxicity study. Bangladesh J Med Sci 2022;21:373-83.
  30. Sarasua JG, Lopez SP, Viejo MA, Basterrechea MP, Rodriguez AF, Gutierrez AF, Gala JG, Menendez YM, Augusto DE, Arias AP, Hernandez JO. Treatment of pressure ulcers with autologous bone marrow nuclear cells in patients with spinal cord injury. J Spinal Cord Med 2011;34:301-7.
  31. Zhang J, Zhai H, Yu P, Shang D, Mo R, Li Z, Wang X, Lu J, Xie Q, Xiang X. Human umbilical cord blood mononuclear cells ameliorate CCl4-induced acute liver injury in mice via inhibiting inflammatory responses and upregulating peripheral interleukin-22. Front Pharmacol 2022;13:924464.
  32. Tanaka R, Fujimura S, Kado M, Fukuta T, Arita K, Hirano-Ito R, Mita T, Watada H, Kato Y, Miyauchi K, Mizuno H. Phase I/IIa feasibility trial of autologous quality- and quantity-cultured peripheral blood mononuclear cell therapy for non-healing extremity ulcers. Stem Cells Transl Med 2022;11:146-58.
  33. Hatakeyama M, Kanazawa M, Ninomiya I, Omae K, Kimura Y, Takahashi T, Onodera O, Fukushima M, Shimohata T. A novel therapeutic approach using peripheral blood mononuclear cells preconditioned by oxygen-glucose deprivation. Sci Rep 2019;9:16819. Erratum in: Sci Rep 2019;9:19913.
  34. Gao L, Li Y, Yang YJ, Zhang DY. The effect of moderate-intensity treadmill exercise on bone mass and the transcription of peripheral blood mononuclear cells in ovariectomized rats. Front Physiol 2021;12:729910.
  35. Wu Y, Liu X, Han Y, Li L, Jian M, Sun G, Nie J. Peripheral blood mononuclear cells regulate differentially expressed proteins in the proximal sciatic nerve of rats after transection anastomosis. Neuroscience 2022;491:146-55.
  36. Kang J, Hur J, Kang JA, Lee HS, Jung H, Choi JI, Lee H, Kim YS, Ahn Y, Kim HS. Priming mobilized peripheral blood mononuclear cells with the "activated platelet supernatant" enhances the efficacy of cell therapy for myocardial infarction of rats. Cardiovasc Ther 2016;34:245-53.
  37. Ben-Slama I, Mrad I, Rihane N, Mir LE, Sakly M, Amara S. Sub-acute oral toxicity of zinc oxide nanoparticles in male rats. J Nanomed Nanotechnol 2015;6:284.
  38. Alazzouni AS, Fathalla AS, Gabri MS, Dkhil MA, Hassan BN. Role of bone marrow derived-mesenchymal stem cells against gastric ulceration: histological, immunohistochemical and ultrastructural study. Saudi J Biol Sci 2020;27:3456-64.
  39. Serban GM, Manescu IB, Manu DR, Dobreanu M. Optimization of a density gradient centrifugation protocol for isolation of peripheral blood mononuclear cells. Acta Med Marisiensis 2018;64:83-90.
  40. Oellerich M, Dasgupta A. Personalized immunosuppression in transplantation: role of biomarker monitoring and therapeutic drug monitoring. Elsevier; 2016. p. 200-26.
  41. Escobar G, Escobar A, Ascui G, Tempio FI, Ortiz MC, Perez CA, Lopez MN. Pure platelet-rich plasma and supernatant of calcium-activated P-PRP induce different phenotypes of human macrophages. Regen Med 2018;13:427-41.
  42. Dhurat R, Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author's perspective. J Cutan Aesthet Surg 2014;7:189-97.
  43. Jo CH, Roh YH, Kim JE, Shin S, Yoon KS. Optimizing platelet-rich plasma gel formation by varying time and gravitational forces during centrifugation. J Oral Implantol 2013;39:525-32.
  44. Cavallo C, Roffi A, Grigolo B, Mariani E, Pratelli L, Merli G, Kon E, Marcacci M, Filardo G. Platelet-rich plasma: the choice of activation method affects the release of bioactive molecules. Biomed Res Int 2016;2016:6591717.
  45. Gaertner DJ, Hallman TM, Hankenson FC, Batchelder MA. Anesthesia and analgesia for laboratory rodents. In: Fish RE, Brown MJ, Danneman PJ, Karas AZ, editors. Anesthesia and Analgesia in Laboratory Animals. 2nd ed. Academic press; 2008. p. 239-97.
  46. Bancroft JD, Gamble M. Theory and practice of histological techniques. 6th ed. Elsevier; 2008. p. 126-7.
  47. Ramos-Vara JA, Kiupel M, Baszler T, Bliven L, Brodersen B, Chelack B, Czub S, Del Piero F, Dial S, Ehrhart EJ, Graham T, Manning L, Paulsen D, Valli VE, West K. Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J Vet Diagn Invest 2008;20:393-413.
  48. Kim MR, Kim TI, Choi BR, Kim MB, Cho IJ, Lee KW, Ku SK. Brassica oleracea prevents HCl/ethanol-induced gastric damages in mice. Appl Sci 2021;11:16.
  49. Dawson BK, Trapp RG. Basic and clinical biostatistics. 3rd ed. Mcgraw-Hill; 2000. p. 161-218.
  50. Aboulhoda BE, Abdeltawab DA, Rashed LA, Abd Alla MF, Yassa HD. Hepatotoxic effect of oral zinc oxide nanoparticles and the ameliorating role of selenium in rats: a histological, immunohistochemical and molecular study. Tissue Cell 2020;67:101441.
  51. Elshama SS, El-Kenawy AEM, Osman HEH. Histopathological study of zinc oxide nanoparticle-induced neurotoxicity in rats. Toxicology 2017;13:95-103.
  52. Jeong SH, Kim HJ, Ryu HJ, Ryu WI, Park YH, Bae HC, Jang YS, Son SW. ZnO nanoparticles induce TNF-α expression via ROS-ERK-Egr-1 pathway in human keratinocytes. J Dermatol Sci 2013;72:263-73.
  53. Elshakaa N, Bahaa N, Zeid AA, Latif HA. A histological and immunohistochemical study on the effect of zinc oxide nanoparticles on rat lung tissue. QJM 2021;114 Suppl 1:hcab099.007.
  54. Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, Wang H, Liu Y. Cytotoxicity of metal-based nanoparticles: from mechanisms and methods of evaluation to pathological manifestations. Adv Sci (Weinh) 2022;9:e2106049.
  55. Liang X, Zhang D, Liu W, Yan Y, Zhou F, Wu W, Yan Z. Reactive oxygen species trigger NF-κB-mediated NLRP3 inflammasome activation induced by zinc oxide nanoparticles in A549 cells. Toxicol Ind Health 2017;33:737-45.
  56. Lim JW, Kim H, Kim KH. Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Invest 2001;81:349-60.
  57. Kim DY, Kim JH, Lee JC, Won MH, Yang SR, Kim HC, Wie MB. Zinc oxide nanoparticles exhibit both cyclooxygenase- and lipoxygenase-mediated apoptosis in human bone marrowderived mesenchymal stem cells. Toxicol Res 2019;35:83-91.
  58. Song WJ, Jeong MS, Choi DM, Kim KN, Wie MB. Zinc oxide nanoparticles induce autophagy and apoptosis via oxidative injury and pro-inflammatory cytokines in primary astrocyte cultures. Nanomaterials (Basel) 2019;9:1043.
  59. Patron-Romero L, Luque-Morales PA, Loera-Castaneda V, Lares-Asseff I, Leal-Avila MA, Alvelais-Palacios JA, Plasencia-Lopez I, Almanza-Reyes H. Mitochondrial dysfunction induced by zinc oxide nanoparticles. Crystals 2022;12:1089.
  60. Nassar SA, Ghonemy OI, Awwad MH, Mahmoud MSM, Alsagati YMB. Cyto and genotoxic effects of zinc oxide nanoparticles on testicular tissue of albino rat and the protective role of vitamin E. Transylv Rev 2017;25:5809-19.
  61. Srivastav AK, Kumar A, Prakash J, Singh D, Jagdale P, Shankar J, Kumar M. Genotoxicity evaluation of zinc oxide nanoparticles in Swiss mice after oral administration using chromosomal aberration, micronuclei, semen analysis, and RAPD profile. Toxicol Ind Health 2017;33:821-34.
  62. Almansour M, Alarifi S, Melhim W, Jarrar BM. Nephron ultrastructural alterations induced by zinc oxide nanoparticles: an electron microscopic study. IET Nanobiotechnol 2019;13:515-21.
  63. Muller KH, Kulkarni J, Motskin M, Goode A, Winship P, Skepper JN, Ryan MP, Porter AE. pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano 2010;4:6767-79.
  64. Hamza SA, Aly HM, Soliman SO, Abdallah DM. Ultrastructural study of the effect of zinc oxide nanoparticles on rat parotid salivary glands and the protective role of quercetin. Alex Dent J 2016;41:232-7.
  65. Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 2012;125:462-72.
  66. Ornellas FM, Ornellas DS, Martini SV, Castiglione RC, Ventura GM, Rocco PR, Gutfilen B, de Souza SA, Takiya CM, Morales MM. Bone marrow-derived mononuclear cell therapy accelerates renal ischemia-reperfusion injury recovery by modulating inflammatory, antioxidant and apoptotic related molecules. Cell Physiol Biochem 2017;41:1736-52.
  67. Ramli Y, Alwahdy AS, Kurniawan M, Juliandi B, Wuyung PE, Susanto YDB. Intravenous versus intraarterial transplantation of human umbilical cord blood mononuclear cells for brain ischemia in rats. Hayati 2017;24:187-94.
  68. Huang Q, Liu B, Jiang R, Liao S, Wei Z, Bi Y, Liu X, Deng R, Jin Y, Tan Y, Yang Y, Qin A. G-CSF-mobilized peripheral blood mononuclear cells combined with platelet-rich plasma accelerate restoration of ovarian function in cyclophosphamide-induced POI rats. Biol Reprod 2019;101:91-101. Erratum in: Biol Reprod 2020;102:1145.
  69. Pysna A, Bem R, Nemcova A, Fejfarova V, Jirkovska A, Hazdrova J, Jude EB, Dubsky M. Endothelial progenitor cells biology in diabetes mellitus and peripheral arterial disease and their therapeutic potential. Stem Cell Rev Rep 2019;15:157-65.
  70. Zhang M, Huang B. The multi-differentiation potential of peripheral blood mononuclear cells. Stem Cell Res Ther 2012;3:48.
  71. Nie Z, Xu L, Li C, Tian T, Xie P, Chen X, Li B. Association of endothelial progenitor cells and peptic ulcer treatment in patients with type 2 diabetes mellitus. Exp Ther Med 2016;11:1581-6.
  72. Panahipour L, Kochergina E, Laggner M, Zimmermann M, Mildner M, Ankersmit HJ, Gruber R. Role for lipids secreted by irradiated peripheral blood mononuclear cells in inflammatory resolution in vitro. Int J Mol Sci 2020;21:4694.
  73. Beer L, Zimmermann M, Mitterbauer A, Ellinger A, Gruber F, Narzt MS, Zellner M, Gyongyosi M, Madlener S, Simader E, Gabriel C, Mildner M, Ankersmit HJ. Analysis of the secretome of apoptotic peripheral blood mononuclear cells: impact of released proteins and exosomes for tissue regeneration. Sci Rep 2015;5:16662.
  74. Mildner CS, Copic D, Zimmermann M, Lichtenauer M, Direder M, Klas K, Bormann D, Gugerell A, Moser B, Hoetzenecker K, Beer L, Gyongyosi M, Ankersmit HJ, Laggner M. Secretome of stressed peripheral blood mononuclear cells alters transcriptome signature in heart, liver, and spleen after an experimental acute myocardial infarction: an in silico analysis. Biology (Basel) 2022;11:116.
  75. Lichtenauer M, Mildner M, Hoetzenecker K, Zimmermann M, Podesser BK, Sipos W, Berenyi E, Dworschak M, Tschachler E, Gyongyosi M, Ankersmit HJ. Secretome of apoptotic peripheral blood cells (APOSEC) confers cytoprotection to cardiomyocytes and inhibits tissue remodelling after acute myocardial infarction: a preclinical study. Basic Res Cardiol 2011;106:1283-97.
  76. Gudbrandsdottir S, Hasselbalch HC, Nielsen CH. Activated platelets enhance IL-10 secretion and reduce TNF-α secretion by monocytes. J Immunol 2013;191:4059-67.
  77. Qian Y, Han Q, Chen W, Song J, Zhao X, Ouyang Y, Yuan W, Fan C. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration. Front Chem 2017;5:89.
  78. Ahn JY, Hong YH, Kim KC, Kim JH, Lee SY, Lee JR, Lee EJ. Effect of human peripheral blood mononuclear cells on mouse endometrial cell proliferation: a potential therapeutics for endometrial regeneration. Gynecol Obstet Invest 2022;87:105-15.