DOI QR코드

DOI QR Code

Insertions of the striated muscles in the skin and mucosa: a histological study of fetuses and cadavers

  • Received : 2024.02.17
  • Accepted : 2024.04.06
  • Published : 2024.06.30

Abstract

Striated muscle insertions into the skin and mucosa are present in the head, neck, and pelvic floor. We reexamined the histology of these tissues to elucidate their role in transmission of the force. We examined histological sections of 25 human fetuses (gestational ages of ~11-19 weeks and ~26-40 weeks) and 6 cadavers of elderly individuals. Facial muscle insertion or terminal almost always formed as an interdigitation with another muscle or as a circular arrangement in which muscle fiber insertions were sandwiched and mechanically supported by other muscle fibers (like an in-series muscle). Our examination of the face revealed some limited exceptions in which muscle fibers that approached the dermis were always in the nasalis and mentalis muscles, and often in the levator labii superioris alaeque nasi muscle. The buccinator muscle was consistently inserted into the basement membrane of the oral mucosa. Parts of the uvulae muscle in the soft palate and of the intrinsic vertical muscle of the tongue were likely to direct toward the mucosa. In contrast, the pelvic floor did not contain striated muscle fibers that were directed toward the skin or mucosa. Although 'cutaneous muscle' is a common term, the actual insertion of a muscle into the skin or mucosa seemed to be very rare. Instead, superficial muscle insertion often consisted of interdigitated muscle bundles that had different functional vectors. In this case, the terminal of one muscle bundle was sandwiched and fixed mechanically by other bundles.

Keywords

References

  1. Ohtsuka K, Tomita H, Murakami G. Anatomy of the tonsillar bed: topographical relationship between the palatine tonsil and the lingual branch of the glossopharyngeal nerve. Acta Otolaryngol Suppl 2002;546:99-109. https://doi.org/10.1080/00016480260046472
  2. Meng H, Murakami G, Suzuki D, Miyamoto S. Anatomical variations in stylopharyngeus muscle insertions suggest interindividual and left/right differences in pharyngeal clearance function of elderly patients: a cadaveric study. Dysphagia 2008;23:251-7. https://doi.org/10.1007/s00455-007-9131-2
  3. Abe S, Fukuda M, Yamane S, Saka H, Katori Y, Rodriguez-Vazquez JF, Murakami G. Fetal anatomy of the upper pharyngeal muscles with special reference to the nerve supply: is it an enteric plexus or simply an intramuscular nerve? Anat Cell Biol 2013;46:141-8. https://doi.org/10.5115/acb.2013.46.2.141
  4. Rohan RF, Turner L. The levator palati muscle. J Anat 1956;90:153-4.
  5. Domenech-Ratto G. Development and peripheral innervation of the palatal muscles. Acta Anat (Basel) 1977;97:4-14. https://doi.org/10.1159/000144712
  6. Stal PS, Lindman R. Characterisation of human soft palate muscles with respect to fibre types, myosins and capillary supply. J Anat 2000;197(Pt 2):275-90. https://doi.org/10.1046/j.1469-7580.2000.19720275.x
  7. Langdon HL, Klueber K. The longitudinal fibromuscular component of the soft palate in the fifteen-week human fetus: musculus uvulae and palatine raphe. Cleft Palate J 1978;15:337-48.
  8. Klueber K, Langdon HL. Anatomy of musculus levator veli palatini in the 15-week human fetus. Acta Anat (Basel) 1979;105:94-105. https://doi.org/10.1159/000145113
  9. Shimokawa T, Yi SQ, Izumi A, Ru F, Akita K, Sato T, Tanaka S. An anatomical study of the levator veli palatini and superior constrictor with special reference to their nerve supply. Surg Radiol Anat 2004;26:100-5. https://doi.org/10.1007/s00276-003-0183-1
  10. Hinata N, Murakami G. The urethral rhabdosphincter, levator ani muscle, and perineal membrane: a review. Biomed Res Int 2014;2014:906921.
  11. Sasaki H, Hinata N, Kurokawa T, Murakami G. Supportive tissues of the vagina with special reference to a fibrous skeleton in the perineum: a review. Open J Obstet Gynecol 2014;4:144-57. https://doi.org/10.4236/ojog.2014.43025
  12. Kim JH, Kinugasa Y, Yu HC, Murakami G, Abe S, Cho BH. Lack of striated muscle fibers in the longitudinal anal muscle of elderly Japanese: a histological study using cadaveric specimens. Int J Colorectal Dis 2015;30:43-9. https://doi.org/10.1007/s00384-014-2038-0
  13. Arakawa T, Hayashi S, Kinugasa Y, Murakami G, Fujimiya M. Development of the external anal sphincter with special reference to intergender difference: observations of mid-term fetuses (15-30 weeks of gestation). Okajimas Folia Anat Jpn 2010;87:49-58. https://doi.org/10.2535/ofaj.87.49
  14. Arakawa T, Hwang SE, Kim JH, Wilting J, Rodriguez-Vazquez JF, Murakami G, Hwang HP, Cho BH. Fetal growth of the anal sinus and sphincters, especially in relation to anal anomalies. Int J Colorectal Dis 2016;31:493-502. https://doi.org/10.1007/s00384-015-2455-8
  15. Yamamoto M, Hirota Y, Watanabe G, Taniguchi S, Murakami G, Rodriguez-Vazquez JF, Abe SI. Development and growth of median structures in the human tongue: a histological study using human fetuses and adult cadavers. Anat Rec (Hoboken) 2024;307:426-41. https://doi.org/10.1002/ar.25198
  16. Ogawa Y, Hinata N, Murakami G, Bando Y, Kitamura K, Hussein AA, Guru K, Abe SI, Fujisawa M. Aspects of lymphatic vessel configuration of the human male urinary bladder and adjacent organs: a histological basis for understanding the spread of cancer metastases. Transl Res Anat 2018;11:10-7. https://doi.org/10.1016/j.tria.2018.05.001
  17. Hinata N, Hussein AA, Bando Y, Terakawa T, Murakami G, Yamamoto M, Abe SI, Guru K, Fujisawa M. Histologic investigation of the female vesicourethral junction and adjacent tissues for nerve-sparing radical cystectomy. Urology 2021;149:161-7. https://doi.org/10.1016/j.urology.2020.12.001
  18. Huijing PA, van de Langenberg RW, Meesters JJ, Baan GC. Extramuscular myofascial force transmission also occurs between synergistic muscles and antagonistic muscles. J Electromyogr Kinesiol 2007;17:680-9. https://doi.org/10.1016/j.jelekin.2007.02.005
  19. Schumann NP, Bongers K, Scholle HC, Guntinas-Lichius O. Atlas of voluntary facial muscle activation: visualization of surface electromyographic activities of facial muscles during mimic exercises. PLoS One 2021;16:e0254932.
  20. Mueller N, Trentzsch V, Grassme R, Guntinas-Lichius O, Volk GF, Anders C. High-resolution surface electromyographic activities of facial muscles during mimic movements in healthy adults: a prospective observational study. Front Hum Neurosci 2022;16:1029415.
  21. Trotter JA. Functional morphology of force transmission in skeletal muscle. A brief review. Acta Anat (Basel) 1993;146:205-22. https://doi.org/10.1159/000147459
  22. Huijing PA. Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech 1999;32:329-45. https://doi.org/10.1016/S0021-9290(98)00186-9
  23. Light N, Champion AE. Characterization of muscle epimysium, perimysium and endomysium collagens. Biochem J 1984;219:1017-26. https://doi.org/10.1042/bj2191017
  24. Purslow PP. The structure and functional significance of variations in the connective tissue within muscle. Comp Biochem Physiol A Mol Integr Physiol 2002;133:947-66. https://doi.org/10.1016/S1095-6433(02)00141-1
  25. Sleboda DA, Stover KK, Roberts TJ. Diversity of extracellular matrix morphology in vertebrate skeletal muscle. J Morphol 2020;281:160-9. https://doi.org/10.1002/jmor.21088
  26. Mitz V, Peyronie M. The superficial musculo-aponeurotic system (SMAS) in the parotid and cheek area. Plast Reconstr Surg 1976;58:80-8. https://doi.org/10.1097/00006534-197607000-00013
  27. Watanabe K, Han A, Inoue E, Iwanaga J, Tabira Y, Yamashita A, Kikuchi K, Haikata Y, Nooma K, Saga T. The key structure of the facial soft tissue: the superficial musculoaponeurotic system. Kurume Med J 2023;68:53-61. https://doi.org/10.2739/kurumemedj.MS682008