DOI QR코드

DOI QR Code

Utilization of Satellite Technologies for Agriculture

  • Ju-Kyung Yu (Department of crop science, Chungbuk National University) ;
  • Jinhyun Ahn (Department of Management Information Systems, Jeju National University) ;
  • Gyung Deok Han (Department of Practical Arts Education, Cheongju National University of Education) ;
  • Ho-Min Kang (Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Hyun Jo (Department of Applied Biosciences, Kyungpook National University) ;
  • Yong Suk Chung (Department of Plant Resources and Environment, Jeju National University)
  • Received : 2024.06.04
  • Accepted : 2024.06.26
  • Published : 2024.07.31

Abstract

Satellite technology has emerged as a powerful tool in modern agriculture, offering capabilities for Earth observation, land-use pattern analysis, crop productivity assessment, and natural disaster prevention. This mini-review provides a concise overview of the applications and benefits of satellite technologies in agriculture. It discusses how satellite imagery enables the monitoring of crop health, identification of land-use patterns, evaluation of crop productivity, and mitigation of natural disasters. Farmers and policymakers can make informed decisions to optimize agricultural practices, enhance food security, and promote sustainable agriculture by leveraging satellite data. Integrating satellite technology with other advancements, such as artificial intelligence and precision farming techniques, holds promise for further revolutionizing the agricultural sector. Overall, satellite technology has immense potential for improving agricultural efficiency, resilience, and sustainability in the face of evolving environmental challenges.

Keywords

Acknowledgement

This work was supported by the 2024 education, research and student guidance grant funded by Jeju National University.

References

  1. Abd, N. M., Abd, S. E., Marei, S. S., 2020, A Review: Application of remote sensing as a promising strategy for insect pests and diseases management, Environmental Science and Pollution Research, 27, 33503-22515.
  2. Ahmad, U., Alvino, A., Marino, S. A., 2021, A Review of crop water stress assessment using remote sensing, Remote Sensing, 13, 4155.
  3. Becker, W. R., Silva, L. C., Richetti, J, Lo, T.B., Johann, J. A., 2021, Harvest date forecast for soybeans from maximum vegetative development using satellite images, International Journal of Remote Sensing, 42, 1121-1138. https://doi.org/10.1080/01431161.2020.1823042
  4. Behrenfeld, M. J., Falkowski, P. G., 1997, Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnology and oceanography, 42, 1-20. https://doi.org/10.4319/lo.1997.42.1.0001
  5. Cao, M., Chen, M., Liu, J., Liu, Y., 2022, Assessing the performance of satellite soil moisture on agricultural drought monitoring in the North China Plain, Agricultural Water Management, 263, 107450.
  6. Feng, H., Tao, H., Li, Z., Yang, G., Zhao, C., 2022, Comparison of UAV RGB imagery and hyperspectral remote-sensing data for monitoring winter wheat growth, Remote Sensing, 14, 3811.
  7. Fu, S., Gao, J., Zhao, L., 2020, Integrated resource management for terrestrial-satellite systems, IEEE Transactions on Vehicular Technology, 69, 3256-3266. https://doi.org/10.1109/TVT.2020.2964659
  8. Grody, N., 1976, Remote sensing of atmospheric water content from satellites using microwave radiometry, IEEE Transactions on Antennas and Propagation, 24, 155-162. https://doi.org/10.1109/TAP.1976.1141324
  9. Huang, J., Gomez-Dans, J. L., Huang, H., Ma, H., Wu, Q., Lewis, P. E., Liang, S., Chen, Z., Xue, J. H., Wu, Y., Zhao, F., 2019, Assimilation of remote sensing into crop growth models: Current status and perspectives, Agricultural and forest meteorology, 276, 107609.
  10. Ihuoma, S. O., Madramootoo, C. A., Kalacska, M., 2021, Integration of satellite imagery and in situ soil moisture data for estimating irrigation water requirements, International Journal of Applied Earth Observation and Geoinformation, 102, 102396.
  11. Jahn, A., 2001, Resource management model and performance evaluation for satellite communications, International journal of satellite communications, 19, 169-203. https://doi.org/10.1002/sat.693
  12. Karthikeyan, L., Chawla, I., Mishra, A. K., 2020, A Review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses, Journal of Hydrology, 586, 124905.
  13. Kim, E. S., Won, M., Kim, K., Park, J., Lee, J. S., 2019,  Forest management research using optical sensors and remote sensing technologies, Korean Journal of Remote Sensing, 35, 1031-1035. https://doi.org/10.7780/KJRS.2019.35.6.2.1
  14. Korznikov, K. A., Kislov, D. E., Altman, J., Dolezal, J., Vozmishcheva, A. S., Krestov, P. V., 2021, Using U-Net-like deep convolutional neural networks for precise tree recognition in very high resolution RGB(red, green, blue) satellite images, Forests, 12, 66.
  15. Ku, K., Mansoor, S., Han, G. D., Chung, Y. S., Tuan, T. T., 2023, Identification of new cold tolerant Zoysia grass species using high-resolution RGB and multispectral imaging, Scientific Reports, 13, 13209.
  16. Lee, M. S., Kim, S. J., Shin, H. S., Park, J. K., Park, J. H., 2009, Extraction of agricultural land use and crop growth information using KOMPSAT-3 resolution satellite image, Korean Journal of Remote Sensing, 25, 411-421. https://doi.org/10.7780/KJRS.2009.25.5.411
  17. Lee, S. W., Park, N. W., 2011, Application of Bayesian probability rule to the combination of spectral and temporal contextual information in land-cover classification, Korean Journal of Remote Sensing, 27, 445-455. https://doi.org/10.7780/KJRS.2011.27.4.445
  18. Ma, Q., Su, Y., Guo, Q., 2017, Comparison of canopy cover estimations from airborne LiDAR, aerial imagery, and satellite imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 4225-4236. https://doi.org/10.1109/JSTARS.2017.2711482
  19. Mohamed, E. S., Baroudy, A. A., El-Beshbeshy, T., Emam, M., Belal, A. A., Elfadaly, A., Aldosari, A. A., Ali, A. M., Lasaponara, R., 2020, Vis-nir spectroscopy and satellite landsat-8 oli data to map soil nutrients in arid conditions: A Case study of the northwest coast of egypt, RemoteSensing, 12, 3716.
  20. Nakalembe, C., Becker-Reshef, I., Bonifacio, R., Hu, G, Humber, M.L., Justice, C. J., Keniston, J., Mwangi, K., Rembold, F., Shukla, S., Urbano, F.,2021, A Review of satellite-based global agricultural monitoring systems available for Africa, Global food Security, 29, 100543.
  21. Park, S., Kim, Y., Na, S. I., Park, N. W., 2020, Evaluation of spatio-temporal fusion models of multi-sensor high-resolution satellite images for crop monitoring: An Experiment on the fusion of sentinel-2 and rapid eye images, Korean Journal of Remote Sensing, 36, 807-821. https://doi.org/10.7780/KJRS.2020.36.5.1.13
  22. Peng, J., Loew, A., Zhang, S., Wang, J., Niesel, J., 2015, Spatial downscaling of satellite soil moisture data using a vegetation temperature condition index, IEEE Transactions on Geoscience and Remote Sensing, 54, 558-566.
  23. Sayao, V. M., Dematte, J. A., Bedin, L. G., Nanni, M. R., Rizzo, R., 2018, Satellite land surface temperature and reflectance related with soil attributes, Geoderma, 325, 125-140. https://doi.org/10.1016/j.geoderma.2018.03.026
  24. Schwalbert, R. A., Amado, T., Corassa, G. Pott, L. P., Prasad, P. V., Ciampitti, I. A., 2020, Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil, Agricultural and Forest Meteorology, 284, 107886.
  25. Silvero, N. E., Dematte, J. A., de Souza, V. J., de Oliveira, M. F. A., Amorim, M. T., Poppiel, R. R., de Sousa, M. W., Bonfatti, B. R., 2021, Soil property maps with satellite images at multiple scales and its impact on management and classification, Geoderma, 397, 115089.
  26. Yang, C., Everitt, J. H., Du, Q., Luo, B., Chanussot, J., 2012, Using high-resolution airborne and satellite imagery to assess crop growth and yield variability for precision agriculture, Proceedings of the IEEE, 101, 582-592.
  27. Yuan, L., Zhang, H., Zhang, Y., Xing, C., Bao, Z., 2017, Feasibility assessment of multi-spectral satellite sensors in monitoring and discriminating wheat diseases and insects, Optik, 131, 598-608. https://doi.org/10.1016/j.ijleo.2016.11.206
  28. Veysi, S., Naseri, A. A., Hamzeh, S., Bartholomeus, H., 2017, A Satellite based crop water stress index for irrigation scheduling in sugarcane fields, Agricultural water management, 189, 70-86. https://doi.org/10.1016/j.agwat.2017.04.016