Acknowledgement
This work was supported by the 2024 education, research and student guidance grant funded by Jeju National University.
References
- Abd, N. M., Abd, S. E., Marei, S. S., 2020, A Review: Application of remote sensing as a promising strategy for insect pests and diseases management, Environmental Science and Pollution Research, 27, 33503-22515.
- Ahmad, U., Alvino, A., Marino, S. A., 2021, A Review of crop water stress assessment using remote sensing, Remote Sensing, 13, 4155.
- Becker, W. R., Silva, L. C., Richetti, J, Lo, T.B., Johann, J. A., 2021, Harvest date forecast for soybeans from maximum vegetative development using satellite images, International Journal of Remote Sensing, 42, 1121-1138. https://doi.org/10.1080/01431161.2020.1823042
- Behrenfeld, M. J., Falkowski, P. G., 1997, Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnology and oceanography, 42, 1-20. https://doi.org/10.4319/lo.1997.42.1.0001
- Cao, M., Chen, M., Liu, J., Liu, Y., 2022, Assessing the performance of satellite soil moisture on agricultural drought monitoring in the North China Plain, Agricultural Water Management, 263, 107450.
- Feng, H., Tao, H., Li, Z., Yang, G., Zhao, C., 2022, Comparison of UAV RGB imagery and hyperspectral remote-sensing data for monitoring winter wheat growth, Remote Sensing, 14, 3811.
- Fu, S., Gao, J., Zhao, L., 2020, Integrated resource management for terrestrial-satellite systems, IEEE Transactions on Vehicular Technology, 69, 3256-3266. https://doi.org/10.1109/TVT.2020.2964659
- Grody, N., 1976, Remote sensing of atmospheric water content from satellites using microwave radiometry, IEEE Transactions on Antennas and Propagation, 24, 155-162. https://doi.org/10.1109/TAP.1976.1141324
- Huang, J., Gomez-Dans, J. L., Huang, H., Ma, H., Wu, Q., Lewis, P. E., Liang, S., Chen, Z., Xue, J. H., Wu, Y., Zhao, F., 2019, Assimilation of remote sensing into crop growth models: Current status and perspectives, Agricultural and forest meteorology, 276, 107609.
- Ihuoma, S. O., Madramootoo, C. A., Kalacska, M., 2021, Integration of satellite imagery and in situ soil moisture data for estimating irrigation water requirements, International Journal of Applied Earth Observation and Geoinformation, 102, 102396.
- Jahn, A., 2001, Resource management model and performance evaluation for satellite communications, International journal of satellite communications, 19, 169-203. https://doi.org/10.1002/sat.693
- Karthikeyan, L., Chawla, I., Mishra, A. K., 2020, A Review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses, Journal of Hydrology, 586, 124905.
- Kim, E. S., Won, M., Kim, K., Park, J., Lee, J. S., 2019, Forest management research using optical sensors and remote sensing technologies, Korean Journal of Remote Sensing, 35, 1031-1035. https://doi.org/10.7780/KJRS.2019.35.6.2.1
- Korznikov, K. A., Kislov, D. E., Altman, J., Dolezal, J., Vozmishcheva, A. S., Krestov, P. V., 2021, Using U-Net-like deep convolutional neural networks for precise tree recognition in very high resolution RGB(red, green, blue) satellite images, Forests, 12, 66.
- Ku, K., Mansoor, S., Han, G. D., Chung, Y. S., Tuan, T. T., 2023, Identification of new cold tolerant Zoysia grass species using high-resolution RGB and multispectral imaging, Scientific Reports, 13, 13209.
- Lee, M. S., Kim, S. J., Shin, H. S., Park, J. K., Park, J. H., 2009, Extraction of agricultural land use and crop growth information using KOMPSAT-3 resolution satellite image, Korean Journal of Remote Sensing, 25, 411-421. https://doi.org/10.7780/KJRS.2009.25.5.411
- Lee, S. W., Park, N. W., 2011, Application of Bayesian probability rule to the combination of spectral and temporal contextual information in land-cover classification, Korean Journal of Remote Sensing, 27, 445-455. https://doi.org/10.7780/KJRS.2011.27.4.445
- Ma, Q., Su, Y., Guo, Q., 2017, Comparison of canopy cover estimations from airborne LiDAR, aerial imagery, and satellite imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 4225-4236. https://doi.org/10.1109/JSTARS.2017.2711482
- Mohamed, E. S., Baroudy, A. A., El-Beshbeshy, T., Emam, M., Belal, A. A., Elfadaly, A., Aldosari, A. A., Ali, A. M., Lasaponara, R., 2020, Vis-nir spectroscopy and satellite landsat-8 oli data to map soil nutrients in arid conditions: A Case study of the northwest coast of egypt, RemoteSensing, 12, 3716.
- Nakalembe, C., Becker-Reshef, I., Bonifacio, R., Hu, G, Humber, M.L., Justice, C. J., Keniston, J., Mwangi, K., Rembold, F., Shukla, S., Urbano, F.,2021, A Review of satellite-based global agricultural monitoring systems available for Africa, Global food Security, 29, 100543.
- Park, S., Kim, Y., Na, S. I., Park, N. W., 2020, Evaluation of spatio-temporal fusion models of multi-sensor high-resolution satellite images for crop monitoring: An Experiment on the fusion of sentinel-2 and rapid eye images, Korean Journal of Remote Sensing, 36, 807-821. https://doi.org/10.7780/KJRS.2020.36.5.1.13
- Peng, J., Loew, A., Zhang, S., Wang, J., Niesel, J., 2015, Spatial downscaling of satellite soil moisture data using a vegetation temperature condition index, IEEE Transactions on Geoscience and Remote Sensing, 54, 558-566.
- Sayao, V. M., Dematte, J. A., Bedin, L. G., Nanni, M. R., Rizzo, R., 2018, Satellite land surface temperature and reflectance related with soil attributes, Geoderma, 325, 125-140. https://doi.org/10.1016/j.geoderma.2018.03.026
- Schwalbert, R. A., Amado, T., Corassa, G. Pott, L. P., Prasad, P. V., Ciampitti, I. A., 2020, Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil, Agricultural and Forest Meteorology, 284, 107886.
- Silvero, N. E., Dematte, J. A., de Souza, V. J., de Oliveira, M. F. A., Amorim, M. T., Poppiel, R. R., de Sousa, M. W., Bonfatti, B. R., 2021, Soil property maps with satellite images at multiple scales and its impact on management and classification, Geoderma, 397, 115089.
- Yang, C., Everitt, J. H., Du, Q., Luo, B., Chanussot, J., 2012, Using high-resolution airborne and satellite imagery to assess crop growth and yield variability for precision agriculture, Proceedings of the IEEE, 101, 582-592.
- Yuan, L., Zhang, H., Zhang, Y., Xing, C., Bao, Z., 2017, Feasibility assessment of multi-spectral satellite sensors in monitoring and discriminating wheat diseases and insects, Optik, 131, 598-608. https://doi.org/10.1016/j.ijleo.2016.11.206
- Veysi, S., Naseri, A. A., Hamzeh, S., Bartholomeus, H., 2017, A Satellite based crop water stress index for irrigation scheduling in sugarcane fields, Agricultural water management, 189, 70-86. https://doi.org/10.1016/j.agwat.2017.04.016