DOI QR코드

DOI QR Code

Reviewing the Assessment of Optimal Yield of Groundwater in Korea

  • Soo-Hyoung Lee (Groundwater Environment Research Center, Korea Institute of Geoseicences and Mineral Resources) ;
  • Jae Min Lee (Groundwater Environment Research Center, Korea Institute of Geoseicences and Mineral Resources) ;
  • Se-Yeong Hamm (Department of Geosciences, Pusan National University)
  • 투고 : 2024.05.27
  • 심사 : 2024.06.26
  • 발행 : 2024.07.31

초록

The optimal yield is defined as the amount of groundwater that maintains a dynamic equilibrium state of the groundwater system over a long period. We examined the current problems, improvements, and methods for estimating the optimal groundwater yield in Korea, considering sustainable groundwater development. The optimal yield for individual wells and the sustainable yield for the entire groundwater basin were reviewed. Generally, the optimal yield for individual wells can be determined using long-term pumping and step drawdown tests. The optimal yield can be determined by groundwater quantity and quality, economic, and water use rights factors. The optimal yield of individual wells in the groundwater basin must be determined within the total sustainable amount of the entire groundwater basin, such that the optimal yield of a new well must be less than the remaining total sustainable amount, exempting the total optimal yield of the existing wells. Therefore, the optimal yield may be determined based on the estimated optimal yield at least twice per year. In addition, if groundwater level and pumping quantity data for at least one year are available, it may be effective to use the Hill, Harding, and zero groundwater-level change methods to re-estimate the optimal yield.

키워드

참고문헌

  1. Andres, G., Egger, R., 1985, A New tritium interface method for determining the recharge rate of deep groundwater in the Bavarian Molasse basin, J. Hydrol., 82, 27-38.
  2. Arnold, J. G., Muttiah, R. S., Srinivasan, R., Allen, P. M., 2000, Regional estimation of base flow and groundwater recharge in the upper Mississippi river basin, J. Hydrol., 227, 21-40.
  3. Bae, S. K., Kim, Y. H., 2006, Estimation of groundwater recharge rate using the NRSC-CN and the baseflow separation methods, J. Environ. Sci., 15, 253-260.
  4. Bourdet, D., Whittle, T. M., Douglas, A. A., Pirard, Y. M., 1983, A New set of type curves simplifies well test analysis, World Oil, 95-106.
  5. Chen, W. P., Lee, C. H., 2003, Estimating ground-water recharge from streamflow records, Environ. Earth Sci., 44, 257-265.
  6. Cho, B. W., Yun, U., Moon, S. H., Lee, B. D., Cho, S. Y., Kim, Y. C., Shin, J. H., Hwang, S. H., Ha, K. C., 2017, Optimal pumping rate of a water well at lmgokri, Sangju city, The J. Eng. Geol., 27, 255-265.
  7. Choi, B. S., Ahn, J. G., 1998, A Study on the estimation of regional groundwater recharge ratio, J. the Korean Soc. Groundwater Environ., 5, 57-65.
  8. Chung, Y. H., Kim, K., H., 2000, Estimation of groundwater recharge rate with SCS-CN method in Miwon, J. Inst. of Construction Tech., 19, 181-190.
  9. Conkling, H., 1946, Utilization of ground-water storage in stream system development, Trans. Amer. Soc. Civil Engineers, 111, 275-305.
  10. Chung, I. M., Kim, N.-W., Lee, J., Sophocleous, M., 2010, Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: Application to Mihocheon watershed, South Korea, Hydrogeology J., 18, 1253.
  11. Domenico, P. A., Anderson, D. V., Case, C. M., 1968, Optimal ground-water mining, Water Resour. Res., 4, 247-255.
  12. Dulay, M. P., 2011, From Chaos to Harmony: Public Participation and Environmental Policy, Ph.D. dissertation, University of Texas, Austin, Texas.
  13. Hamm, S. Y., Lim, J. U., Bae, D. J., Chwae, U. C., 1998, A Study on the determination of optimal yield from fissured aquifers, J. the Korean Soc. Groundwater Environ., 5, 21-29.
  14. Hamm, S. Y., Cheong, J. Y., Kim, H. S., Hahn, J. S., Cha, Y. H., 2005, Groundwater flow modeling in a riverbank filtration area, Desan-Myeon, Changwon City, Economic and Environ. Geol., 38, 67-78.
  15. Harding, S. T., 1927, Ground water resources of southern San Joaquin valley: Bull., Div. of Eng. and Irrig, Dept. of Public Works, State of California, 11.
  16. Healy, R. W., Cook, P. G., 2002, Using groundwater levels to estimate recharge, Hydrogeology J.,10, 91-109.
  17. Kazmann, R. G., 1956, "Safe yield" in ground-water development, reality or illusion?, Proc. Amer. Soc. Civil Engineers, 82(IR3), 1-12.
  18. Koh, Y. K., Bae, D. S., Kim, C. S., Kim, K. S., Chung, H. J., Kim, S. Y., 2001, Consideration of the groundwater recharge based on environmental isotopic characteristics of the small basin in the Yeosu area, J. Korean Soc. Soil and Groundwater Environ., 6, 93-106.
  19. Lee, B. D., Moon, H. S., 2019, Improvement measures of the permit system in natural mineral water, J. Environ. Policy and Administration, 27, 161-187.
  20. Lee, C. H., 1915, The determination of safe yield of underground reservoirs of the closed-basin type, Trans. Amer. Soc. Civil Engineers, 78, 148-251.
  21. Lee, D. R., 1995, Prediction of long-term low streamflow and groundwater recharge using groundwater recession curve, Ph. D. thesis, Korea University, Seoul, Korea, 359.
  22. Lee, J. Y., 2016, Step-drawdown test is not a tool to determine the so called optimal discharge rate, J. the Geol. Soc. Korea, 52, 443-446.
  23. Lin, L., Lin, H., 2019, Determination of groundwater sustainable yield using a numerical modelling approach for the Table Mountain Group sandstone aquifer, Rawsonville, South Africa, Hydrogeology J., 27, 841-855.
  24. Mann, J. F., Jr., 1963, Factors affecting the safe yield of ground-water basins, Trans. Amer. Soc. Civil Engineers, 128, 180-190.
  25. Meyboom, P., 1961, Estimating groundwater recharge from stream hydrographs, J. Geophys. Res., 66, 203-1214.
  26. Ministry of Environment, 2013, Guidelines of Environmental Impact Survey for Drinking Mineral Water Development, 31.
  27. Ministry of Environment, 2020, Guidelines for Performance of Groundwater Works, 327.
  28. Moon, S. K., Woo, N. C., Lee, K. S., 2004, Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge, J. Hydrol., 292, 198-209.
  29. Msangi, S., Hejazi, M., 2022, How stable is the stabilization value of groundwater? Examining the behavioral and physical determinants, Water Resour. and Economics, 38, 100195.
  30. Park, C. K., 1996a, Estimation of the available amount of groundwater in South Korea: 1. Development of the method, J. the Korean Soc. Groundwater Environ., 3, 15-20.
  31. Park, C. K., 1996b, Estimation of the available amount of groundwater in South Korea: 2. Application of five major river basins, J. the Korean Soc. Groundwater Environ., 3, 21-26.
  32. Pierce, S. A., Dulay, M. M., Sharp, J. M., Lowry, T. S., Tidwell, V. C., 2006, Defining tenable groundwater management: Integrating stakeholder preferences, distributed parameter models, and systems dynamics to aid groundwater resource allocation: in MODFLOW and More 2006: Managing Groundwater Systems (Poeter E., Hill, M. & Zheng, C-M., eds.), Golden, Colorado, International Ground Water Modeling, 409-413.
  33. Sharp, J. M., Jr., 2016, Sustainability of groundwater resources: Conceptual evolution, opportunities, & challenges: in sustaining Ireland's water future: The role of groundwater, Proceedings, 36th Annual Groundwater Conference, Inter. Assoc. Hydrogeologists, Irish Chapter, Tullamore, Ireland, Session 1, 11.
  34. Sharp, J. M., Jr., Pierce, S. A. Smith, B. A., Dulay, M. P., Eaton, D. J., 2008, Conflict resolution and integration of science in groundwater policy development, Water Down Under 2008, 2453-2462.
  35. Solomon, D. K., Schief, S. L., Poreda, R. J., Clarke, W. B., 1993, A Validation of 3H/3 He method for determining groundwater recharge, Water Resour. Res., 29, 2951-2962.
  36. Sukhija, B. S., Reddy, D. V., Nagabhushanam, P., Hussain, S., 1996, Environmental and injected tracers methodology to estimate direct precipitation recharge to a confined aquifer, J. Hydrol., 177, 77-97.
  37. Sunwoo, J.-H., 1992, Necessity of groundwater development in Korea, J. Korea Water Resour. Assoc., 25, 6-17.
  38. Thomas, H. E., 1951, The Conservation of Groundwater, McGraw-Hill, New York.