DOI QR코드

DOI QR Code

금강유역 신규조성습지의 환경 특성이 동물플랑크톤 군집 구조에 미치는 영향

Effect of Environmental Characteristics on the Zooplankton Community of the Newly Created Wetlands in the Geum River, South Korea

  • 최종윤 (부경대학교 지속가능공학부 생태공학전공)
  • Jong-Yun Choi (Department of Ecological Engineening, Pukyong University)
  • 투고 : 2024.05.14
  • 심사 : 2024.07.11
  • 발행 : 2024.07.31

초록

The newly created wetlands in the Geum River Basin have undergone various environmental changes since their establishment in 2012. In this study, we evaluated the influence of environmental characteristics on zooplankton, which are sensitive to environmental changes, and considered appropriate wetland management plans. The thirty-two wetlands were divided into two groups based on the differences in their macrophyte cover. High species diversity and zooplankton density were found in cluster 2, which had abundant macrophyte cover. In contrast, cluster 1, with low plant cover, had lower species diversity and zooplankton density, primarily of pelagic zooplankton. To maintain species diversity and abundance of zooplankton in wetlands, we recommend implementing a management strategy that encourages the development of various plant communities through efficient water conveyance functions.

키워드

과제정보

이 논문은 2023년도 부경대학교 자율창의학술연구비 지원에 의하여 수행되었습니다.

참고문헌

  1. Andrews, C., Kroger, R., Miranda. L., 2008, Predicting nitrogen and phosphorus concentrations using chlorophyll-a fluorescence and turbidity, Proceedings of the Mississippi Water Resources Conference, Mississippi, 155-159.
  2. Blechinger, T., Link, D., Nelson, J. K., & Hansen, G. J., 2024, Estimating ethanol correction factors for δ 13C and δ15N isotopic signatures of freshwater zooplankton from multiple lakes, Limnol. Oceanogr. Methods, 22, 464-472. https://doi.org/10.1002/lom3.10623
  3. Bunn, S. E., Boon, P. I., 1993, What sources of organic carbon drive food webs in billabongs? A Study based on stable isotope analysis, Oecologia, 96(1), 85-94. https://doi.org/10.1007/BF00318034
  4. Celewicz-Goldyn, S., Kuczynska-Kippen, N., 2017, Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies, PLoS One, 12(5), e0177317.
  5. Chen, M., Chen, F., 2017, Effect of suspended solids on interaction between filter-feeding fish Aristichthys nobilis and zooplankton in a shallow lake using a mesocosm experiment, J. Freshw. Ecol., 32(1), 219-227. https://doi.org/10.1080/02705060.2016.1262293
  6. Choi, J. Y., Jeong, K. S., Kim, H. W., Chang, K. H., Joo, G. J., 2011, Inter-annual variability of a zooplankton community: The importance of summer concentrated rainfall in a regulated river ecosystem, J. Ecol. Environ., 34(1), 49-58.
  7. Choi, J. Y., Kim, S. K., Chang, K. H., Kim, M. C., La, G. H., Joo, G. J.. Jeong, K. S., 2014, Population growth of the cladoceran, Daphnia magna: A Quantitative analysis of the effects of different algal food, PloS one, 9(4), e95591.
  8. Choi, J. Y., Kim, S. K., Jeong, K. S., Joo, G. J., 2015, Distribution pattern of epiphytic microcrustaceans in relation to different macrophyte microhabitats in a shallow wetland (Upo wetlands, South Korea), Oceanol. Hydrobiol. Stud., 44(2), 151-163. https://doi.org/10.1515/ohs-2015-0015
  9. Choi, J. Y., Kim, S. K., Park, J. S., Kim, J. C., Yoon, J. H., 2018, Fish distribution and management strategy for improve biodiversity in created wetlands located at Nakdong River basin, Korean J. Environ. Ecol., 32(3), 274-288. https://doi.org/10.13047/KJEE.2018.32.3.274
  10. Choi, J. Y., Kim, S. K., 2020a, Responses of rotifer community to microhabitat changes caused by summer-concentrated rainfall in a shallow reservoir, South Korea, Diversity, 12(3), 113.
  11. Choi, J. Y., Kim, S. K., Kim, J. C., Yun, J. H., 2020b, Effect of microhabitat structure on the distribution of an endangered fish, Coreoperca kawamebari (Temminck & Schlegel, 1843) in the Geum River, South Korea, Water, 12(6), 1690.
  12. Czuba, J. A., Hansen, A. T., Foufoula-Georgiou, E., Finlay, J. C., 2018, Contextualizing wetlands within a river network to assess nitrate removal and inform watershed management, Water Resources Research, 54(2), 1312-1337. https://doi.org/10.1002/2017WR021859
  13. de Faria, D. M., Cardoso, L. D. S., da Motta Marques, D., 2017, Epiphyton dynamics during an induced succession in a large shallow lake: wind disturbance and zooplankton grazing act as main structuring forces, Hydrobiologia, 788, 267-280. https://doi.org/10.1007/s10750-016-3002-5
  14. Dallas, T., Drake, J. M., 2014, Relative importance of environmental, geographic, and spatial variables on zooplankton metacommunities, Ecosphere, 5(9), 1-13. https://doi.org/10.1890/ES14-00071.1
  15. Field, J. G., Clarke, K. R., Warwick, R. M., 1982, A Practical strategy for analysing multispecies distribution patterns, Mar. Ecol. Prog. Ser., 8, 37-52. https://doi.org/10.3354/meps008037
  16. Flinn, M. B., Whiles, M. R., Adams, S. R., Garvey, J. E., 2005, Macroinvertebrate and zooplankton responses to emergent plant production in upper Mississippi River floodplain wetlands, Archiv fur Hydrobiologie, 162(2), 187-210. https://doi.org/10.1127/0003-9136/2005/0162-0187
  17. Gutierrez, M. F., Epele, L. B., Mayora, G., Aquino, D., Mora, C., Quintana, R., Mesa, L., 2022, Hydro-climatic changes promote shifts in zooplankton composition and diversity in wetlands of the Lower Parana River Delta, Hydrobiologia, 849(16), 3463-3480. https://doi.org/10.1007/s10750-022-04955-0
  18. Horppila, J., Eloranta, P., Liljendahl-Nurminen, A., Niemist, J., Pekcan-Hekim, Z., 2009, Refuge availability and sequence of predators determine the seasonal succession of crustacean zooplankton in a clay-turbid lake, Aquat. Ecol., 43, 91-103. https://doi.org/10.1007/s10452-007-9158-3
  19. Im, R. Y., Kim, J. Y., Nishihiro, J., Joo, G. J., 2020, Large weir construction causes the loss of seasonal habitat in riverine wetlands: A Case study of the Four Large River Projects in South Korea, Ecological engineering, 152, 105839.
  20. Jaccard, P., 1908, Nouvelles recherches sur la distribution florale, Bulletin Society Sciences Naturale, 44, 223-270.
  21. Ji, C. W., Oh, H. J., Chang, K. H., Park, Y. S., Kwak, I. S., 2022, A Comparative analyzing of zooplankton community diversity in surface layer water of reservoir via eDNA metabarcoding and microscopy, Diversity, 14(10), 797.
  22. Kattel, G. R., Eyre, B. D., Gell, P. A., 2020, Integration of palaeo-and-modern food webs reveal slow changes in a river floodplain wetland ecosystem, Scientific Reports, 10(1), 12955.
  23. Kim, K. S., Kang, D. W., Kim, K. Y., Heo, J. S., Song, H. Y., Yoon, J. D., 2022, Characterization of the complete mitogenome of the endangered freshwater fish Gobiobotia naktongensis from the Geum River in South Korea: Evidence of stream connection with the Paleo-Huanghe, Genes & genomics, 44(8), 945-956. https://doi.org/10.1007/s13258-022-01265-6
  24. Kim, S. K., Joo, G. J., Choi, J. Y., 2022a, Effect of gated weir opening on the topography and zooplankton community of Geum River, South Korea, Land, 11(4), 529.
  25. Kim, S. K., Yun, J. H., Joo, G. J., Choi, J. Y., 2022b, Hydrological characteristics and trophic status as dominant drivers of rotifer community composition in artificially created riverine wetlands, Animals, 12(4), 461.
  26. Lee, H., Koo, M. H., Cho, B. W., Oh, Y. H., Kim, Y., Cho, S. Y., Lee, J. Y., Kim, Y., Kim, D. H., 2020, Effects of baekje weir operation on the stream-aquifer interaction in the Geum River basin, South Korea, Water, 12(11), 2984. https://doi.org/10.3390/w12112984
  27. Liang, D., Huang, C., Lin, S., Dong, J., Liang, M., Luo, H., 2024, Epiphytic zooplankton community profiles in a typical urban wetland as revealed by DNA metabarcoding, J. Oceanol. Limnol., 1-15.
  28. Lomartire, S., Marques, J. C., Goncalves, A. M., 2021, The key role of zooplankton in ecosystem services: A Perspective of interaction between zooplankton and fish recruitment, Ecol. Indic., 129, 107867.
  29. Manatunge, J., Asaeda, T., Priyadarshana, T., 2000, The influence of structural complexity on fish-zooplankton interactions: A Study using artificial submerged macrophytes, Environ. Biol. Fishes, 58, 425-438. https://doi.org/10.1023/A:1007691425268
  30. Messyasz, B., Kuczynska-Kippen, N., Nagengast, B., 2009, The epiphytic communities of various ecological types of aquatic vegetation of five pastoral ponds, Biologia, 64, 88-96. https://doi.org/10.2478/s11756-009-0006-x
  31. Mizuno, T., Takahashi, E., 1999, An Illustration Guide to Freshwater Zooplankton in Japan, Tokai University, Tokyo, Japan.
  32. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Wagner, H., 2015, Package 'Vegan', Community Ecology Package, Vers. 2.2-1, http://cran.r-project.org/web/packages/vegan/index.html (accessed on 20 February 2024).
  33. Palmeri, L., Persson, J., Pieterse, N. M., Timmermann, T., Bendoricchio, G., Kluge, W., Jorgensen, S. E., 2000, Models for wetland planning, design and management, EcoSys Bd, 8, 93-137.
  34. Portinho, J. L., Perbiche-Neves, G., Nogueira, M. G., 2016, Zooplankton community and tributary effects in free-flowing section downstream a large tropical reservoir, Int. Rev. Hydrobiol., 101(1-2), 48-56. https://doi.org/10.1002/iroh.201501798
  35. Preciado, I., Velasco, F., Olaso, I., 2008, The role of pelagic fish as forage for the demersal fish community in the southern Bay of Biscay, Journal of Marine Systems, 72(1-4), 407-417. https://doi.org/10.1016/j.jmarsys.2007.04.007
  36. Reeder, B. C., 2011, Assessing constructed wetland functional success using diel changes in dissolved oxygen, pH, and temperature in submerged, emergent, and open-water habitats in the Beaver Creek Wetlands Complex, Kentucky (USA), Ecol. Eng., 37(11), 1772-1778. https://doi.org/10.1016/j.ecoleng.2011.06.018
  37. Scofield, A. E., Watkins, J. M., Rudstam, L. G., 2020, Heterogeneity in zooplankton distributions and vertical migrations: Application of a laser optical plankton counter in offshore Lake Michigan, J. Great. Lakes Res., 46(4), 780-797. https://doi.org/10.1016/j.jglr.2020.01.005
  38. Seuront, L., Yamazaki, H., Souissi, S., 2004, Hydrodynamic disturbance and zooplankton swimming behavior, Zoo. Stud., 43(2), 376-387.
  39. Shoup, D. E., Nannini, M. A., Wahl, D. H., 2012, The effect of vegetation density on juvenile bluegill diet and growth, J. Freshw. Ecol., 27(2), 199-209. https://doi.org/10.1080/02705060.2011.641357
  40. Son, S. H., Choi, J. Y., 2021, Influence of environmental characteristics on the community structure of benthic macroinvertebrates in stream-type waterways constructed at upper reaches of Guem River, J. of Ecol. Environ., 54(1), 24-38.
  41. Tolonen, K. T., Holopainen, I. J., Hamalainen, H., Rahkola-Sorsa, M., Ylostalo, P., Mikkonen, K., Karjalainen, J., 2005, Littoral species diversity and biomass: Concordance among organismal groups and the effects of environmental variables, Biodiversity & Conservation, 14, 961-980. https://doi.org/10.1007/s10531-004-8414-2
  42. Uchida, R., 2000, Essential nutrients for plant growth: Nutrient functions and deficiency symptoms, Plant nutrient management in Hawaii's soils, 4, 31-55.
  43. Vincent, K., Mwebaza-Ndawula, L., Makanga, B., Nachuha, S., 2012, Variations in zooplankton community structure and water quality conditions in three habitat types in northern Lake Victoria, Lakes Reserv., 17(2), 83-95. https://doi.org/10.1111/j.1440-1770.2012.00504.x
  44. Wojtal-Frankiewicz, A., Frankiewicz, P., 2011, The impact of pelagic (Daphnia longispina) and benthic (Dreissena polymorpha) filter feeders on chlorophyll and nutrient concentration, Limnologica, 41(3), 191-200. https://doi.org/10.1016/j.limno.2010.09.001
  45. Zhao, C., Liu, C., Zhao, J., Xia, J., Yu, Q., Eamus, D., 2013, Zooplankton in highly regulated rivers: Changing with water environment, Ecol. Eng., 58, 323-334. https://doi.org/10.1016/j.ecoleng.2013.07.035
  46. Zhao, Q., Liu, S., Niu, X., 2020, Effect of water temperature on the dynamic behavior of phytoplankton-zooplankton model, Appl. Math. Comput., 378, 125211.