DOI QR코드

DOI QR Code

고에너지 레이저용 고밀집 다채널 실리콘-카바이드 변형거울의 정밀 조립 방법

Method for the Assembly of a High-density Multi-channel Deformable Mirror for High Energy Lasers

  • 이혁교 (한국표준과학연구원 길이형상측정그룹) ;
  • 조선호 (한화시스템 전자광학체계4팀) ;
  • 김시현 (한화시스템 전자광학체계4팀) ;
  • 이재현 (한국표준과학연구원 길이형상측정그룹) ;
  • 강필성 (한국표준과학연구원 길이형상측정그룹)
  • Hyug-Gyo Rhee (Length & Dimensional Metrology Group, Korea Research Institute of Standards and Science) ;
  • Sunho Cho (Electro Optics System 4Team) ;
  • Sihyun Kim (Electro Optics System 4Team) ;
  • Jaehyun Lee (Length & Dimensional Metrology Group, Korea Research Institute of Standards and Science) ;
  • Pilseong Kang (Length & Dimensional Metrology Group, Korea Research Institute of Standards and Science)
  • 투고 : 2024.05.29
  • 심사 : 2024.06.28
  • 발행 : 2024.08.25

초록

대기 중 레이저 빔 전파 시 대기 난류에 의한 악영향을 해소하고 빔품질을 향상시키기 위해서 적응광학을 사용한다. 본 논문에서는 장거리 레이저 전송을 위한 적응광학계의 핵심 부품인 변형거울의 정밀 조립 방법을 제안한다. 변형거울은 거울판과 구동기, 플렉셔(flexure)로 구성되며 이 부품들을 정밀하게 조립하는 것이 성능을 좌우한다. 본 논문에서는 지그의 설계/제작을 통해 고밀집 다채널 실리콘-카바이드 변형거울을 완성했으며, 변형거울 성능 확인을 통해 제안한 방법의 유효성을 검증했다.

A laser beam propagating in free space can be negatively affected by atmospheric turbulence. To overcome this and correct the wavefront error of the laser beam itself, a deformable mirror (DM), which is a key component of adaptive optics, is widely used. In this paper, a novel precision assembling method is suggested for a multi-channel high-density DM. The material of the mirror sheet of the DM is silicon carbide (SiC), and the actuator is a stacked-type lead-magnesium-niobate (Pb(Mg1/3Nb2/3)O3; PMN). To connect the mirror sheet and each actuator, a flexure is inserted. The flexure can make the DM operate with full strokes without the failure of adhesive. A series of jigs were designed and applied in order to assemble these three parts (the mirror sheet, actuators, and flexures) precisely. After assembly, the performance of the DM was also checked.

키워드

과제정보

2024년도 방위사업청 재원으로 국방기술진흥연구소의 지원을 받아 수행(Grant No. KRIT-CT-21-024, 고에너지 레이저용 변형거울 설계 및 파면보상 기술).

참고문헌

  1. M. Chen, C. Liu, and H. Xian, "Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics," Appl. Opt. 54, 8722-8726 (2015).
  2. J. Y. Joo, S. G. Han, J. H. Lee, H.-G. Rhee, J. Huh, K. Lee, and S. Y. Park, "Development and characterization of an atmospheric turbulence simulator using two rotating phase plates," Curr. Opt. Photonics 6, 445-452 (2022).
  3. H.-G. Oh, P. Kang, J. Lee, H.-G. Rhee, Y.-S. Ghim, and J. H. Lee, "Fabrication of phase plate to simulate turbulence effects on an optical imaging system in strong atmospheric conditions," Curr. Opt. Photonics 8, 259-269 (2024).
  4. P. Kang, J. Huh, K. Lee, S. Park, and H.-G. Rhee, "Design of a discrete flexure for SiC deformable mirror with PMN stackedactuators," Opt. Express 29, 31778-31759 (2021).
  5. P.-Y. Madec, "Overview of deformable mirror technologies for adaptive optics and astronomy," Proc. SPIE 8447, 844705 (2012).
  6. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, "Smart microscope: An adaptive optics learning system for aberration correction in multiphoton confocal microscopy," Opt. Lett. 25, 52-54 (2000).
  7. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, "Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror," J. Microsc. 206, 65-71 (2002).
  8. K. Ahn, H.-G. Rhee, H.-S. Yang, and H. Kihm, "CVD SiC deformable mirror with monolithic cooling channels," Opt. Express 26, 9724-9739 (2018).
  9. K. Ahn, H.-G. Rhee, H.-S. Yang, and H. Kihm, "Silicon carbide deformable mirror with 37 actuators for adaptive optics," J. Korean Phys. Soc. 67, 1882-1888 (2015).
  10. K.-W. Park, C.-W. Kim, H.-G. Rhee, H.-S. Yang, and E.-J. Lee, "Stress-relieved assembly method for a high-resolution airborne optical system," J. Korean Phys. Soc. 60, 1032-1036 (2012).
  11. Zygo Co., "DynaFiz®: Production ready 3D optical profiler system," (Zygo Co.) https://www.zygo.com/products/metrology-systems/3d-optical-profilers/zegage-pro (Accessed date: Jul. 4, 2024).