DOI QR코드

DOI QR Code

상업용 회절 광학 소자를 활용한 결맞음 빔결합 연구

Coherent Beam Combining with Commercial Diffractive Optical Elements

  • 류대건 (광주과학기술원 고등광기술연구소) ;
  • 김영찬 (광주과학기술원 고등광기술연구소) ;
  • 노영철 (광주과학기술원 고등광기술연구소) ;
  • 문병혁 (LIG넥스원 광정보융합연구소) ;
  • 박은지 (LIG넥스원 광정보융합연구소) ;
  • 김기혁 (LIG넥스원 광정보융합연구소) ;
  • 정성묵 (LIG넥스원 광정보융합연구소)
  • Daegeon Ryu (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Youngchan Kim (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Young-Chul Noh (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Byunghyuck Moon (Optics & Laser Research Center, LIGNex1) ;
  • Eunji Park (Optics & Laser Research Center, LIGNex1) ;
  • Kihyuck Kim (Optics & Laser Research Center, LIGNex1) ;
  • Seongmook Jeong (Optics & Laser Research Center, LIGNex1)
  • 투고 : 2024.04.23
  • 심사 : 2024.06.03
  • 발행 : 2024.08.25

초록

상업용 회절 광학 소자를 통한 레이저 빔결합 연구를 위해 시드 공유형 3 채널 광섬유 레이저와 위상 제어 시스템을 제작하였다. 회절 광학소자에 입사되는 빔의 각도를 조절하여 빔결합을 실시하고, 이 때 각 빔의 위상을 제어하여 결합된 빔의 세기가 최대가 되도록 하였다. 소자를 투과하기 전 3 채널 레이저의 출력은 약 65 mW이다. 결합된 빔의 세기는 각 채널의 위상 변화에 따라 2.9-48.3 mW로 변화하였으며, 45초간의 위상제어를 통해 결합된 빔의 출력은 42 mW로 전체 시간의 91.8% 이상의 구간에서 출력을 유지할 수 있었다. 본 연구에서 더 나아가 향후 회절 광학 소자의 효율을 높이고 위상 제어 시스템의 성능을 개선함으로써 빔결합 효율을 더 높일 수 있을 것으로 기대된다.

We developed a 3-channel fiber laser with a common seed and a phase control system for laser beam combining through a diffractive optical element. Beam combining was performed by adjusting the angles of the beams incident on the diffractive optical elements, and the phase of each beam was controlled to maximize the intensity of the combined laser beam. The power of the 3-channel laser before passing through the diffractive optical elements is about 65 mW. The power of the combined beam varied between 2.9 mW and 48.3 mW depending on the phase change of each channel. Through phase control, the output of the combined beam can be maintained at 42 mW for more than 91.8% of the total time. It is expected that higher combining efficiency can be achieved by improving the transmittance of the diffractive optical elements and the performance of the phase control system.

키워드

과제정보

LIG Nex1 연구 재원 지원.

참고문헌

  1. R. A. Motes, S. A. Shakir, and R. W. Berdine, Introduction to High Power Fiber Lasers (Directed Energy Professional Society, USA, 2009).
  2. Z. Liu, X. Jin, R. Su, P. Ma, and P. Zhou, "Development status of high power fiber lasers and their coherent beam combination," Sci. China Inf. Sci. 62, 41301 (2019).
  3. H. Jeong, K. H. Lee, J. Lee, D.-J. Kim, J. H. Lee, and M. Jo, "High-beam-quality 2-kW-class spectrally combined laser using narrow linewidth ytterbium-doped polarization-maintaining fiber amplifiers," Korean J. Opt. Photonics 31, 218-222 (2020).
  4. D. C. Jones, A. J. Turner, A. M. Scott, S. M. Stone, R. G. Clark, C. Stace, and C. D. Stacey, "A multi-channel phase locked fibre bundle laser," Proc. SPIE 7580, 75801V (2010).
  5. T. Weyrauch, M. Vorontsov, J. Mangano, V. Ovchinnikov, D. Bricker, E. Polnau, and A. Rostov, "Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km," Opt. Lett. 41, 840-843 (2016).
  6. L. A. Beresnev, R. A. Motes, K. J. Townes, P. Marple, K. Gurton, A. R. Valenzuela, C. Williamson, J. J. Liu, and C. Washer, "Design of a noncooled fiber collimator for compact, highefficiency fiber laser arrays," Appl. Opt. 56, B169-B178 (2017).
  7. L. Beresnev, A. Flores, R. Holten, A. Valenzuela, A. Taliaferro, A. Schweinsberg, K. Gurton, D. Ligon, C. Williamson, and S. Bilyk, "Multi-kW, uncooled densely packed fiber array for laser beam combining," in Proc. 2019 IEEE Research and Applications of Photonics in Defense Conference-RAPID (Miramar Beach, FL, USA, Aug. 19-21, 2019), pp. 1-4.
  8. H. Chang, Q. Chang, J. Xi, T. Hou, R. Su, P. Ma, J. Wu, C. Li, M. Jiang, Y. Ma, and P. Zhou, "First experimental demonstration of coherent beam combining of more than 100 beams," Photonics Res. 8, 1943-1948 (2020).
  9. Y. Kim, Y. Yun, H. Kim, H. Chang, J. Park, Y. Choe, J. Na, J. Yi, H. Kang, M. Yeo, K. Choi, Y. Noh, Y. Jeong, H. Lee, B. Yu, D. Yeom, and J. Jun, "3-channel tiled-aperture coherent-beamcombining system based on target-in-the-loop monitoring and SPGD algorithm," Korean J. Opt. Photonics 32, 1-8 (2021).
  10. Holo/Or, "Diffractive optics for coherent beam combining: An overview," (Holo/Or, Published date: May 11, 2023), https://www.holoor.co.il/diffractive-optics-for-coherent-beam-combining/ (Accessed date: Jan. 12, 2024).
  11. E. C. Cheung, J. G. Ho, G. D. Goodno, R. R. Rice, J. Rothenberg, P. Thielen, M. Weber, and M. Wickham, "Diffractiveoptics-based beam combination of a phase-locked fiber laser array," Opt. Lett. 33, 354-356 (2008).
  12. S. A. Kemme, D. A. Scrymgeour, and D. W. Peters, "High efficiency diffractive optical elements for spectral beam combining," Proc. SPIE 8381, 83810Q (2012).
  13. M. Liu, H. Shen, Y. Yang, Y. Xian, J. Zhang, H. Wang, B. Li, X. Niu, and B. He, "Investigation of combining-efficiency loss induced by a diffractive optical element in a single-aperture coherent beam combining system," Opt. Express 29, 5179-5192 (2021).
  14. L. Daniault, M. Hanna, L. Lombard, Y. Zaouter, E. Mottay, D. Goular, P. Bourdon, F. Druon, and P. Georges, "Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers," Opt. Lett. 36, 621-623 (2011).
  15. M. Muller, C. Aleshire, A. Klenke, E. Haddad, F. Legare, A. Tunnermann, and J. Limpert, "10.4 kW coherently combined ultrafast fiber laser," Opt. Lett. 45, 3083-3086 (2020).
  16. I. Fsaifes, L. Daniault, S. Bellanger, M. Veinhard, J. Bourderionnet, C. Larat, E. Lallier, E. Durand, A. Bringnon, and J.- C. Chanteloup, "Coherent beam combining of 61 femtosecond fiber amplifiers," Opt. Express 28, 20152-20161 (2020).
  17. P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, "Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application," IEEE J. Sel. Top. Quantum Electron. 15, 248-256 (2009).
  18. Z. Huang, X. Tang, D. Zhang, X. Wang, Q. Hu, J. Li, and C. Liu, "Coherent beam combination of ten fiber arrays via stochastic parallel gradient descent algorithm," J. Opt. Technol. 82, 16-20 (2015).
  19. Z. M. Huang, C. L. Liu, J. F. Li, and D. Y. Zhang, "A highspeed, high-efficiency phase controller for coherent beam combining based on SPGD algorithm," Quantum Electron. 44, 301-305 (2014).
  20. H. Kim, J. Na, and Y. Jeong, "Numerical study of SPGD-based phase control of coherent beam combining under various turbulent atmospheric conditions," Korean J. Opt. Photonics 31, 247-258 (2020).