DOI QR코드

DOI QR Code

Hyperlens and Metalens-based Biomedical Imaging

하이퍼렌즈 및 메타렌즈 기반 바이오메디컬 이미징

  • Hyemi Park (Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University) ;
  • Yongjae Jo (Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University) ;
  • Inki Kim (Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University)
  • 박혜미 (성균관대학교 양자생명물리과학원 생명물리학과) ;
  • 조용재 (성균관대학교 양자생명물리과학원 생명물리학과) ;
  • 김인기 (성균관대학교 양자생명물리과학원 생명물리학과)
  • Received : 2024.06.17
  • Accepted : 2024.07.10
  • Published : 2024.08.25

Abstract

Biomedical imaging technologies refer to imaging techniques used in biological research and medical technology that are essential for exploring biological processes, structures, and conditions. They also play a crucial role in the early diagnosis of diseases and the development of treatments. Optical imaging technologies, in particular, are the most widely used and actively researched in biological studies. The major obstacles to technological advancement are the limitations in resolution and light penetration depth. Recently, many technologies have been studied to overcome these limitations using metamaterials. These are materials that can freely manipulate the properties of light through the regular arrangement of nanostructures and have established themselves as innovative tools in the imaging field. This article aims to provide a detailed introduction to the working principles and key applications of these technologies.

바이오 메디컬 이미징 기술은 생물학적 연구 및 의료 기술에 사용되는 이미징 기법으로서 생물학적 과정, 구조 및 상태를 탐구하는 데 필수이며, 질병의 조기 진단과 치료법 개발에도 중요한 역할을 하고 있다. 그중에서도 특히 빛을 이용한 광학 이미징 기술은 생물학 연구에서 가장 많이 활용되고 활발하게 연구되고 있다. 광학 이미징 기술의 발전에 가장 큰 걸림돌이 되고 있는 것은 해상도 및 빛의 투과 깊이 한계 등의 문제인데, 최근에는 메타물질을 이용하여 이를 해결하고자 하는 연구가 활발해지고 있는 추세이다. 메타물질은 나노구조체의 규칙적인 배열을 통해 빛의 성질을 자유롭게 조절하는 물질로서, 이미징 분야에서는 이미 혁신적인 도구로 자리잡고 있다. 이 글에서는 메타물질을 활용한 광학 이미징 기술의 작동 원리와 주요 응용 사례에 대해 자세히 소개하고자 한다.

Keywords

Acknowledgement

이 연구는 과학기술정보통신부 국책연구개발사업(RS-2023-00266110; NRF-2020R1A5A1019649; NRF-2022M3C1A3081312; NRF-2023M3K5A109482011); 과학기술정보통신부 세종과학펠로우십(NRF-2021R1C1C2004291)에서 지원받아서 수행됨.

References

  1. M. Khorasaninejad and F. J. S. Capasso, "Metalenses: Versatile multifunctional photonic components," Science 358, eaam8100 (2017).
  2. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190-1194 (2016).
  3. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-thin, planar, Babinet-inverted plasmonic metalenses," Light Sci. Appl. 2, e72 (2013).
  4. I. Kim, J. Jang, G. Kim, J. Lee, T. Badloe, J. Mun, and J. Rho, "Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform," Nat. Commun. 12, 3614 (2021).
  5. F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, "Resonant metalenses for breaking the diffraction barrier," Phys. Rev. Lett. 104, 203901 (2010).
  6. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, "An ultrathin invisibility skin cloak for visible light," Science 349, 1310-1314 (2015).
  7. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro,"Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science 334, 333-337 (2011).
  8. H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, "Ultrahigh numerical aperture metalens at visible wavelengths," Nano Lett. 18, 4460- 4466 (2018).
  9. M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
  10. W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S.-Y. Wang, and R. S. Williams, "Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography," Appl. Phys. A 87, 143-150 (2007).
  11. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, "Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws," Nat. Photonics 6, 450-454 (2012).
  12. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science 345, 298-302 (2014).
  13. A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett. 13, 829-834 (2013).
  14. X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, "Dual-polarity plasmonic metalens for visible light," Nat. Commun. 3, 1198 (2012).
  15. T. Badloe, Y. Kim, J. Kim, H. Park, A. Barulin, Y. N. Diep, H. Cho, W.-S. Kim, Y.-K. Kim, I. Kim, and J. Rho, "Bright-field and edge-enhanced imaging using an electrically tunable dualmode metalens," ACS Nano 17, 14678-14685 (2023).
  16. A. Barulin, Y. Kim, D. K. Oh, J. Jang, H. Park, J. Rho, and I. Kim, "Dual-wavelength metalens enables Epi-fluorescence detection from single molecules," Nat. Commun. 15, 26 (2024).
  17. Y. Luo, M. L. Tseng, S. Vyas, T.-Y. Hsieh, J.-C. Wu, S.-Y. Chen, H.-F. Peng, V.-C. Su, T.-T. Huang, H. Y. Kuo, C. H. Chu, M. K. Chen, J.-W. Chen, Y.-C. Chen, K.-Y. Huang, C.- H. Kuan, X. Shi, H. Misawa, and D. P. Tsai, "Meta-lens lightsheet fluorescence microscopy for in vivo imaging," Nanophotonics 11, 1949-1959 (2022).
  18. H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, "Nano-optic endoscope for high-resolution optical coherence tomography in vivo," Nat. Photonics 12, 540-547 (2018).
  19. A. Barulin, H. Park, B. Park, and I. Kim, "Dual-wavelength UV-visible metalens for multispectral photoacoustic microscopy: A simulation study," Photoacoustics 32, 100545 (2023).
  20. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
  21. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional subdiffractional imaging at visible frequencies," Nat. Commun. 1, 143 (2010).
  22. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
  23. Y. U. Lee, Z. Nie, S. Li, C.-H. Lambert, J. Zhao, F. Yang, G. B. M. Wisna, S. Yang, X. Zhang, and Z. Liu, "Ultrathin layered hyperbolic metamaterial-assisted illumination nanoscopy," Nano Lett. 22, 5916-5921 (2022).
  24. D. Lee, Y. D. Kim, M. Kim, S. So, H.-J. Choi, J. Mun, D. M. Nguyen, T. Badloe, J. G. Ok, K. Kim, H. Lee, and J. Rho, "Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging," ACS Photonics 5, 2549-2554 (2018).
  25. Y. U. Lee, S. Li, G. B. M. Wisna, J. Zhao, Y. Zeng, A. R. Tao, and Z. Liu, "Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging," Nat. Commun. 13, 6631 (2022).
  26. Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, "Metamaterial assisted illumination nanoscopy via random super-resolution speckles," Nat. Commun. 12, 1559 (2021).
  27. A. Barulin and I. Kim, "Hyperlens for capturing sub-diffraction nanoscale single molecule dynamics," Opt. Express 31, 12162-12174 (2023).