Acknowledgement
이 연구는 과학기술정보통신부 국책연구개발사업(RS-2023-00266110; NRF-2020R1A5A1019649; NRF-2022M3C1A3081312; NRF-2023M3K5A109482011); 과학기술정보통신부 세종과학펠로우십(NRF-2021R1C1C2004291)에서 지원받아서 수행됨.
References
- M. Khorasaninejad and F. J. S. Capasso, "Metalenses: Versatile multifunctional photonic components," Science 358, eaam8100 (2017).
- M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190-1194 (2016). https://doi.org/10.1126/science.aaf6644
- X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-thin, planar, Babinet-inverted plasmonic metalenses," Light Sci. Appl. 2, e72 (2013).
- I. Kim, J. Jang, G. Kim, J. Lee, T. Badloe, J. Mun, and J. Rho, "Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform," Nat. Commun. 12, 3614 (2021).
- F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, "Resonant metalenses for breaking the diffraction barrier," Phys. Rev. Lett. 104, 203901 (2010).
- X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, "An ultrathin invisibility skin cloak for visible light," Science 349, 1310-1314 (2015). https://doi.org/10.1126/science.aac9411
- N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro,"Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science 334, 333-337 (2011). https://doi.org/10.1126/science.1210713
- H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, "Ultrahigh numerical aperture metalens at visible wavelengths," Nano Lett. 18, 4460- 4466 (2018). https://doi.org/10.1021/acs.nanolett.8b01570
- M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007). https://doi.org/10.1364/OL.32.000856
- W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S.-Y. Wang, and R. S. Williams, "Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography," Appl. Phys. A 87, 143-150 (2007). https://doi.org/10.1007/s00339-006-3834-3
- X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, "Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws," Nat. Photonics 6, 450-454 (2012). https://doi.org/10.1038/nphoton.2012.124
- D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science 345, 298-302 (2014). https://doi.org/10.1126/science.1253213
- A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett. 13, 829-834 (2013). https://doi.org/10.1021/nl304761m
- X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, "Dual-polarity plasmonic metalens for visible light," Nat. Commun. 3, 1198 (2012).
- T. Badloe, Y. Kim, J. Kim, H. Park, A. Barulin, Y. N. Diep, H. Cho, W.-S. Kim, Y.-K. Kim, I. Kim, and J. Rho, "Bright-field and edge-enhanced imaging using an electrically tunable dualmode metalens," ACS Nano 17, 14678-14685 (2023). https://doi.org/10.1021/acsnano.3c02471
- A. Barulin, Y. Kim, D. K. Oh, J. Jang, H. Park, J. Rho, and I. Kim, "Dual-wavelength metalens enables Epi-fluorescence detection from single molecules," Nat. Commun. 15, 26 (2024).
- Y. Luo, M. L. Tseng, S. Vyas, T.-Y. Hsieh, J.-C. Wu, S.-Y. Chen, H.-F. Peng, V.-C. Su, T.-T. Huang, H. Y. Kuo, C. H. Chu, M. K. Chen, J.-W. Chen, Y.-C. Chen, K.-Y. Huang, C.- H. Kuan, X. Shi, H. Misawa, and D. P. Tsai, "Meta-lens lightsheet fluorescence microscopy for in vivo imaging," Nanophotonics 11, 1949-1959 (2022). https://doi.org/10.1515/nanoph-2021-0748
- H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, "Nano-optic endoscope for high-resolution optical coherence tomography in vivo," Nat. Photonics 12, 540-547 (2018). https://doi.org/10.1038/s41566-018-0224-2
- A. Barulin, H. Park, B. Park, and I. Kim, "Dual-wavelength UV-visible metalens for multispectral photoacoustic microscopy: A simulation study," Photoacoustics 32, 100545 (2023).
- J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). https://doi.org/10.1103/PhysRevLett.85.3966
- J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional subdiffractional imaging at visible frequencies," Nat. Commun. 1, 143 (2010).
- Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
- Y. U. Lee, Z. Nie, S. Li, C.-H. Lambert, J. Zhao, F. Yang, G. B. M. Wisna, S. Yang, X. Zhang, and Z. Liu, "Ultrathin layered hyperbolic metamaterial-assisted illumination nanoscopy," Nano Lett. 22, 5916-5921 (2022). https://doi.org/10.1021/acs.nanolett.2c01932
- D. Lee, Y. D. Kim, M. Kim, S. So, H.-J. Choi, J. Mun, D. M. Nguyen, T. Badloe, J. G. Ok, K. Kim, H. Lee, and J. Rho, "Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging," ACS Photonics 5, 2549-2554 (2018). https://doi.org/10.1021/acsphotonics.7b01182
- Y. U. Lee, S. Li, G. B. M. Wisna, J. Zhao, Y. Zeng, A. R. Tao, and Z. Liu, "Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging," Nat. Commun. 13, 6631 (2022).
- Y. U. Lee, J. Zhao, Q. Ma, L. K. Khorashad, C. Posner, G. Li, G. B. M. Wisna, Z. Burns, J. Zhang, and Z. Liu, "Metamaterial assisted illumination nanoscopy via random super-resolution speckles," Nat. Commun. 12, 1559 (2021).
- A. Barulin and I. Kim, "Hyperlens for capturing sub-diffraction nanoscale single molecule dynamics," Opt. Express 31, 12162-12174 (2023). https://doi.org/10.1364/OE.486702