DOI QR코드

DOI QR Code

위성영상과 산림생장모형을 활용한 한반도 산림자원 변화 정량화

Quantifying forest resource change on the Korean Peninsula using satellite imagery and forest growth models

  • Moonil Kim (Division of ICT-Integrated Environment, Pyeongtaek University) ;
  • Taejin Park (Bay Area Environmental Research Institute)
  • 투고 : 2024.05.29
  • 심사 : 2024.06.17
  • 발행 : 2024.06.30

초록

본 연구는 한반도 전체 산림면적과 탄소저장량의 변화를 추정하기 위해 수행되었다. 위성영상을 활용하여 2000~2019년 기간 산림면적의 변화를 연도별로 분석하였으며, 한국형 산림탄소모형을 기반으로 2000~2020년의 산림탄소 변화를 추정하였다. 모형의 검증을 위해 국가산림자원조사 자료와 임업통계연보, European Space Agency (ESA)에서 구축한 산림 바이오매스 지도를 활용하였다. Landsat 위성자료를 기반으로 한 한반도 산림손실 면적은 478,334 ha로 추정되었으며, 북한과 남한은 각각 48.6% (232,610 ha)와 51.3% (245,725 ha)의 총 손실 면적을 차지하여 지난 20년간 북한과 남한이 비슷한 면적의 산림이 손실된 것이 확인되었다. 모델 분석 결과 2000년의 우리나라와 북한 산림의 지상부 탄소저장량은 211.5, 277.1 Tg C으로 추정되었으며, 2020년에는 각각 357.9, 417.4 Tg C으로 증가할 것으로 나타났다. 같은 기간 우리 나라와 북한 산림의 단위면적당 평균 탄소저장량은 각각 34.8, 29.4 Mg C ha-1에서 58.9, 44.2 Mg C ha-1으로 증가할 것으로 분석되었으며, 이러한 결과는 우리나라 산림이 북한의 산림보다 전반적인 생산성과 탄소흡수량이 높다는 것을 의미한다. 또한, ESA의 분석 결과에서 우리나라의 산림 바이오매스가 다소 낮게 추정된 것이 확인되었으며, 따라서 앞으로 보다 활발한 연구와 정보공유 등을 통해 국제사회 및 학문의 영역에서 우리나라 산림의 평가가 제고될 필요성이 있다고 사료된다. 본 연구 결과는 한반도 전체 산림 탄소 및 자원의 추정에 행정구역 및 국가 단위의 유용한 정보를 제공할 뿐만 아니라, 향후 북한 산림환경복구 계획수립을 위한 기초자료로 활용될 수 있을 것으로 기대된다.

This study aimed to quantify changes in forest cover and carbon storage of Korean Peninsular during the last two decades by integrating field measurement, satellite remote sensing, and modeling approaches. Our analysis based on 30-m Landsat data revealed that the forested area in Korean Peninsular had diminished significantly by 478,334 ha during the period of 2000-2019, with South Korea and North Korea contributing 51.3% (245,725 ha) and 48.6% (232,610 ha) of the total change, respectively. This comparable pattern of forest loss in both South Korea and North Korea was likely due to reduced forest deforestation and degradation in North Korea and active forest management activity in South Korea. Time series of above ground biomass (AGB) in the Korean Peninsula showed that South and North Korean forests increased their total AGB by 146.4Tg C (AGB at 2020=357.9Tg C) and 140.3Tg C (AGB at 2020=417.4Tg C), respectively, during the last two decades. This could be translated into net AGB increases in South and North Korean forests from 34.8 and 29.4 Mg C ha-1 C to 58.9(+24.1) and 44.2(+14.8) Mg C ha-1, respectively. It indicates that South Korean forests are more productive during the study period. Thus, they have sequestered more carbon. Our approaches and results can provide useful information for quantifying national scale forest cover and carbon dynamics. Our results can be utilized for supporting forest restoration planning in North Korea

키워드

과제정보

This paper was supported by the Research Fund, 2021, Pyeongtaek University in Korea. We would like to express our deep gratitude to the Korean Council for Reconciliation and Cooperation for providing the North Korea-related data for this study.

참고문헌

  1. Bae JS. 2013. A preliminary review of REDD mechanism for rehabilitating forest degradation of North Korea. J. Korean Soc. For. Sci. 102:491-498. https://doi.org/10.14578/jkfs.2013.102.4.491
  2. Cho W, I Kim and D Ko. 2023. Assessment of potential carbon storage in North Korea based on forest restoration strategies. Korean J. Environ. Biol. 41:204-214. https://doi.org/10.11626/KJEB.2023.41.3.204
  3. Cui G, WK Lee, D Kim, EJ Lee, H Kwak, HA Choi, DA Kwak, S Jeon and W Zhu. 2014. Estimation of forest carbon budget from land cover change in South and North Korea between 1981 and 2010. J. Plant Biol. 57:225-238. https://doi.org/10.1007/s12374-014-0165-3
  4. Dalsgaard S. 2001. Comparison of Forest Area and Forest Area Change Estimates Derived from FRA 1990 and FRA 2000. Forest Resources Assessment Programme Working Paper. Vol. 59. Food and Agriculture Organization of the United Nations. Rome, Italy.
  5. Dong Y, Z Ren, Z Wang, Q Yu, L Zhu, H Yu and G Bao. 2020. Spatiotemporal patterns of forest changes in Korean Peninsula using landsat images during 1990-2015: A comparative study of two neighboring countries. IEEE Access 8:73623-73633. https://doi.org/10.1109/ACCESS.2020.2988122
  6. GIR. 2017. National Greenhouse Gas Inventory Report of Korea. Greenhouse Gas Inventory and Research Center. Cheongju, Korea.
  7. Hansen MC, PV Potapov, R Moore, M Hancher, SA Turubanova, A Tyukavina, D Thau, SV Stehman, SJ Goetz, TR Loveland, A Kommareddy, A Egorov, L Chini, CO Justice and JRG Townshend. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:850-853. https://doi.org/10.1126/science.1244693
  8. Hong M, C Song, M Kim, J Kim, M Roh, Y Ko, K Cho, Y Son, S Jeon, F Kraxner and WK Lee. 2023. Modeling-based risks assessment and management of climate change in South Korean forests. Forests 14:745. https://doi.org/10.3390/f14040745
  9. Hong M, C Song, M Kim, J Kim, S Lee, CH Lim, K Cho, Y Son and WK Lee. 2022. Application of integrated Korean forest growth dynamics model to meet NDC target by considering forest management scenarios and budget. Carbon Balanc. Manag. 17:5. https://doi.org/10.1186/s13021-022-00208-8
  10. Kennedy RE, J Ohmann, M Gregory, H Roberts, Z Yang, DM Bell, V Kane, MJ Hughes, WB Cohen, S Powell N Neeti, T Larrue, S Hooper, J Kane, DL Miller, J Perkins, J Braaten and R Seidl. 2018. An empirical, integrated forest biomass monitoring system. Environ. Res. Lett. 13:025004. https://doi.org/10.1088/1748-9326/aa9d9e
  11. Kim M, F Kraxner, N Forsell, C Song and WK Lee. 2021. Enhancing the provisioning of ecosystem services in South Korea under climate change: The benefits and pitfalls of current forest management strategies. Reg. Environ. Change 21:6. https://doi.org/10.1007/s10113-020-01728-0
  12. Kim M, F Kraxner, Y Son, SW Jeon, A Shvidenko, D Schepaschenko, BY Ham, CH Lim, C Song, M Hong and WK Lee. 2019. Quantifying impacts of national-scale afforestation on carbon budgets in South Korea from 1961 to 2014. Forests 10:579. https://doi.org/10.3390/f10070579
  13. Kim M, WK Lee, WA Kurz, DA Kwak, S Morken, CE Smyth and D Ryu. 2017a. Estimating carbon dynamics in forest carbon pools under IPCC standards in South Korea using CBM-CFS3. iForest 10:83-92. https://doi.org/10.3832/ifor2040-009
  14. Kim M, WK Lee, GM Choi, C Song, CH Lim, J Moon, D Piao, F Kraxner, A Shividenko and N Forsell. 2017b. Modeling stand-level mortality based on maximum stem number and seasonal temperature. For. Ecol. Manage. 386:37-50. https://doi.org/10.1016/j.foreco.2016.12.001
  15. Kim M, WK Lee, Y Son, S Yoo, GM Choi and DJ Chung. 2017c. Assessing the impacts of topographic and climatic factors on radial growth of major forest forming tree species of South Korea. For. Ecol. Manage. 404:269-279. https://doi.org/10.1016/j.foreco.2017.08.048
  16. KFS. 2010. Forest Basic Statistics for 2010. Korea Forest Service. Daejeon, Korea.
  17. KFS. 2018. The 2nd Comprehensive Plan to Improve Carbon Sequestration. Korea Forest Service. Daejeon, Korea.
  18. KFS. 2019. Forest Basic Statistics for 2019. Korea Forest Service. Daejeon, Korea.
  19. KREI. 2013. Quarterly Agricultural Trends in North Korea. Vol. 15. Issue 3. Korea Rural Economic Institute. Seoul, Korea.
  20. Lamarche C, M Santoro, S Bontemps, R D'Andrimont, J Radoux, L Giustarini, C Brockmann, J Wevers, P Defourny and O Arino. 2017. Compilation and validation of SAR and optical data products for a complete and global map of inland/ocean water tailored to the climate modeling community. Remote Sens. 9:36. https://doi.org/10.3390/rs9010036
  21. Lee J, TK Yoon, S Han, S Kim, MJ Yi, GS Park, C Kim, YM Son, R Kim and Y Son. 2014. Estimating the carbon dynamics of South Korean forests from 1954 to 2012. Biogeosciences 11:4637-4650. https://doi.org/10.5194/bg-11-4637-2014
  22. Luo W, HS Kim, X Zhao, D Ryu, I Jung, H Cho, N Harris, S Ghosh, C Zhang and J Liang. 2020. New forest biomass carbon stock estimates in Northeast Asia based on multisource data. Glob. Change Biol. 26:7045-7066. https://doi.org/10.1111/gcb.15376
  23. Potapov P, X Li, A Hernandez-Serna, A Tyukavina, MC Hansen, A Kommareddy, A Pickens, S Turubanova, H Tang, CE Silva, J Armston, R Dubayah, JB Blair and M Hofton. 2020. Mapping and monitoring global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253:112165. https://doi.org/10.1016/j.rse.2020.112165
  24. Santoro M. 2018. GlobBiomass - global datasets of forest biomass. PANGAEA. https://doi.org/10.1594/PANGAEA.894711
  25. Santoro M and O Cartus. 2019. ESA Biomass Climate Change Initiative: Global Datasets of Forest Above-Ground Biomass for the Year 2017. v1. Centre for Environmental Data Analysis. https://doi.org/10.5285/BEDC59F37C9545C981A839EB552E4084
  26. Song C, WK Lee, HA Choi, J Kim, SW Jeon and JS Kim. 2016. Spatial assessment of ecosystem functions and services for air purification of forests in South Korea. Environ. Sci. Policy 63:27-34. https://doi.org/10.1016/j.envsci.2016.05.005
  27. Song C, HA Choi, J Son, Y Ko, SA Pietsch and WK Lee. 2023. Assessing forest net primary productivity based on a process-based model: Focusing on pine and oak forest stands in South and North Korea. Korean J. Environ. Biol. 41:400-412. https://doi.org/10.11626/KJEB.2023.41.4.400
  28. Yi JM, MK Song and KS Park. 2017. An analysis on North Korean forest-related articles in Kim Jong Un era(2012-2016): Focusing on forest restoration status and problems. Korean J. Unification Aff. 29:49-81. https://doi.org/10.46561/KUA.2017.29.2.02