DOI QR코드

DOI QR Code

Development and Application of the Teacher Education Model for Using Virtual and Augmented Reality Contents in Elementary Science Class

초등 과학 수업에서 가상현실과 증강현실 콘텐츠 활용을 위한 교사 교육 모델의 개발과 적용 사례

  • Received : 2024.04.14
  • Accepted : 2024.05.23
  • Published : 2024.07.31

Abstract

This study developed and applied the teacher education model and its principles for science classes using Virtual and Augmented Reality (VR/AR) content and analyzed preservice elementary teachers' feedback on the teacher education model and the changes in their perceptions as to the use of VR/AR content. First, existing Technological Pedagogical Content Knowledge (TPACK) teacher education models and prior studies on the use of the VR/AR contents were reviewed to derive the teacher education model to cultivate the VR/AR-TPACK and set the key principles for each of its stages. The developed teacher education model has five stages: exploration, mapping, collaborative design, practice, and reflection. Second, to examine the appropriateness of the model's five stages and principles, we applied it within the regular course of instruction at the university of education, which was attended by 25 preservice elementary teachers. This study collected data from surveys on the perception of the usage of VR/AR contents before and after the course, as well as the group lesson plans prepared by the preservice teachers, and their feedback on the teacher education model. The feedback on the teacher education model and the survey conducted by the preservice teachers before and after the course were analyzed through open coding and categorization. As a result, most preservice teachers expressed positive opinions about the activities and experiences at each stage of the implementation of the teacher education model. Perceptions related to the usage of the VR/AR content changed in three aspects: first, the vague positive perception of the VR/AR content has changed to a positive perception based on specific educational affordance. Second, they recognized the need for preparedness by anticipating potential problems associated with the use of the VR/AR content. Third, they came to view the VR/AR contents as a useful instructional resource that the teachers could use. Based on these results, we discussed the implications for the VR/AR-TPACK teacher education model and assessed the limitations of the research.

이 연구에서는 가상현실과 증강현실(Virtual and Augmented Reality: VR/AR) 콘텐츠 활용 과학 수업을 위한 교사 교육 모델과 원리를 개발 및 적용하고, 적용 과정에 참여한 초등 예비 교사의 교사 교육 모델에 대한 의견과 VR/AR 콘텐츠 활용에 대한 인식 변화를 분석하였다. 이를 위하여 첫째, 기존의 테크놀로지 교수학적 내용지식(Technological Pedagogical Content Knowledge: TPACK) 함양 교사 교육 모델 및 VR/AR 콘텐츠 활용과 관련된 선행연구를 탐색하여 VR/AR-TPACK 함양을 위한 교사 교육 모델과 각 단계의 주요 원리를 도출하였다. 개발된 교사 교육 모델은 '탐색/경험'-'맵핑'-'협력적 설계'-'실행'-'성찰 및 개선' 총 5단계로 구성되었다. 둘째, 개발된 모델의 단계와 원리의 적절성을 탐색하기 위해 25명의 초등 예비 교사가 수강하는 교육대학교 정규 강좌에 적용하였다. 수업 전후 VR/AR 활용에 대한 인식 조사 설문 결과, 예비 교사들이 작성한 그룹별 수업지도안, 교사 교육 모델에 대한 예비교사들의 의견 및 피드백 내용, 교수자/연구자가 작성한 연구 일지를 연구 자료로 수집하였다. 초등 예비 교사들이 작성한 교사 교육 모델에 대한 의견과 연구 참여 전후 인식 조사 설문 내용은 개방 코딩과 범주화 과정을 통해 분석되었다. 연구 결과, 초등 예비 교사들은 교사 교육 모델의 각 단계에서 이루어진 활동과 경험에 대해 대부분 긍정적인 의견을 제시하였다. VR/AR 콘텐츠 활용에 관한 인식은 세 가지 측면에서 변화를 보였다. 첫째, VR/AR 콘텐츠에 대한 막연한 긍정적 인식이 구체적인 교육적 어포던스에 기반한 긍정적 인식으로 변화하였다. 둘째, VR/AR 콘텐츠를 활용할 때 겪을 만한 문제 상황을 경험함으로써 이에 대한 대비가 필요함을 인식하였다. 셋째, VR/AR 콘텐츠를 교사가 활용할 수 있는 유용한 교수 자원으로 인식하게 되었다. 이러한 연구 결과에 기반하여 VR/ARTPACK 교사 교육 모델에 대한 시사점과 연구의 한계를 논의하였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1I1A3040733).

References

  1. 강은희(2018). 스마트 지원 수업 설계에서 초등 예비교사들이 보이는 스마트 도구에 대한 인식과 활용의 차이. 초등과학교육, 37(1), 66-79.
  2. 교육부(2020). 기초를 다지고, 첨단을 누리며, 미래를 이끄는 과학교육 종합계획(안)[2020-2024년]. 세종: 교육부.
  3. 교육부(2021). 2022 개정 교육과정 총론 주요사항(시안). 세종: 교육부 교육과정정책과.
  4. 교육부(2022a). 초.중등학교 교육과정 총론. 교육부 고시 제2022-33호 [별책 1]. 세종시: 교육부.
  5. 교육부(2022b). 과학과 교육과정. 교육부 고시 제2022-33호 [별책 9]. 세종시: 교육부.
  6. 소경희, 박지애, 최유리(2020). 교육개혁 실천에 있어서 교사들의 '의미-만들기(sense-making)' 과정에 대한 개념적 이해. 교육과정연구, 38(4), 131-155.
  7. 이다희, 황우형(2018). 수학교사의 테크놀로지 교수 내용지식(TPACK)에 대한 연구: TPACK에 대한 인식 및 교육요구도 분석 중심으로. 수학교육, 57(1), 1-36.
  8. 차현정, 박정우, 윤혜경(2022). 과학 수업에서의 실감형 콘텐츠 활용에 대한 초등 교사의 인식과 요구. 초등과학교육, 41(3), 480-500.
  9. 차현정, 가석현, 윤혜경(2023). 초등 예비교사의 VR/AR 활용 과학 수업 계획 과정에서 나타나는 TPACK 특징: 인식적 네트워크 분석을 중심으로. 한국과학교육학회지, 43(3), 225-236. https://doi.org/10.14697/JKASE.2023.43.3.225
  10. Angeli, C., & Valanides, N. (2005). Preservice elementary teachers as information and communication technology designers: an instructional systems design model based on an expanded view of pedagogical content knowledge. Journal of Computer Assisted learning, 21(4), 292-302. https://doi.org/10.1111/j.1365-2729.2005.00135.x
  11. Angeli, C., & Valanides, N. (2009). Epistemological and methodological issues for the conceptualization, development, and assessment of ICT-TPCK: Advances in technological pedagogical content knowledge (TPCK). Computers & Education, 52(1), 154-168. https://doi.org/10.1016/j.compedu.2008.07.006
  12. Bandura, A. (1977). Social learning theory. Upper Saddle River, NJ: Prentice Hall.
  13. Barrett, D., & Green, K. (2009). Pedagogical content knowledge as a foundation for an interdisciplinary graduate program. Science Educator, 18(1), 17-28.
  14. Bell, R. L., & Trundle, K. C. (2008). The use of a computer simulation to promote scientific conceptions of moon phases. Journal of Research in Science Teaching, 45(3), 346-372. https://doi.org/10.1002/tea.20227
  15. Billici, S. C., Guzey, S. S., & Yamak, H. (2016). Assessing pre-service science teachers' technological pedagogical content knowledge (TPACK) through observations and lesson plans. Research in Science & Technological Education, 34(2), 237-251. https://doi.org/10.1080/02635143.2016.1144050
  16. Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the educative process. Boston, MA: D.C. Heath & Co Publishers.
  17. Ertmer, P. A., Ottenbreit-Leftwich, A., & Tondeur, J. (2015). Teachers' beliefs and uses of technology to support 21stcentury teaching and learning. In H. Fives, & M. G. Gill (Eds.), International handbook of research on teacher beliefs (pp. 403-418). New York: Routledge.
  18. Griffin, P., McGaw, B., & Care, E. (2012). Assessment and teaching of 21st century skills. Dordrecht; New York: Springer.
  19. Guzey, S. S., & Roehrig, G. H. (2009). Teaching science with technology: Case studies of science teachers' development of technology, pedagogy, and content knowledge. Contemporary Issues in Technology and Teacher Education, 9(1), 25-45.
  20. Jaipal, K., & Figg, C. (2010). Unpacking the "Total PACKage": Emergent TPACK characteristics from a study of preservice teachers teaching with technology. Journal of Technology and Teacher Education, 18(3), 415-441.
  21. Jang, S. J., & Chen, K. C. (2010). From PCK to TPACK: Developing a transformative model for pre-service science teachers. Journal of Science Education and Technology, 19(6), 553-564. https://doi.org/10.1007/s10956-010-9222-y
  22. Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge? Contemporary Issues in Technology & Teacher Education, 9(1), 60-70.
  23. Lee, C. J., & Kim, C. (2014). An implementation study of a TPACK-based instructional design model in a technology integration course. Educational Technology Research and Development, 62, 437-460. https://doi.org/10.1007/s11423-014-9335-8
  24. Leem, J. (2001). An analytical study on the concept of virtual education and cyber education. Journal of Educational Technology, 17(3), 165-194. https://doi.org/10.17232/KSET.17.3.165
  25. McCrory, R. (2008). Science, technology, and teaching: The topic-specific challenges of TPCK in science. In M. J. Koehler, & P. Mishra (Eds.), Handbook of technological pedagogical content knowledge (TPCK) for Educators (pp. 193-206). New York, NY: Routledge.
  26. McLellan, H. (1996). Situated learning perspectives. Englewood Cliffs, NJ: Educational Technology Publications.
  27. Merrill, M. D. (2007). The future of instructional design: The proper study of instructional design. In R. A. Reiser, & J. V. Dempsey (Eds.), Trends and issues in instructional design and technology (pp. 336-341). Upper Saddle River, NJ: Pearson Education Inc.
  28. Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017-1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x
  29. Nichols, S. E., Tippins, D., & Wieseman, K. (1997). A "toolkit" for developing critically reflective science teachers. Research in Science Education, 27(2), 175-194. https://doi.org/10.1007/BF02461315
  30. Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. Teaching and Teacher Education, 21(5), 509-523. https://doi.org/10.1016/j.tate.2005.03.006
  31. OCED. (2005). Definition and selection of key competencies: Executive summary. Retrieved from https://www.oecd.org/pisa/definition-selection-key-competencies-summary.pdf
  32. OECD. (2018). The future of education and skills: Education 2030. Position paper. Retrieved from http://www.oecd.org/education/2030/E2030%20Position%20Paper%20(05.04.2018).pdf
  33. Papanikolaou, K., Makri, K., & Roussos, P. (2017). Learning design as a vehicle for developing TPACK in blended teacher training on technology enhanced learning. International Journal of Educational Technology in Higher Education, 14, 1-14. https://doi.org/10.1186/s41239-017-0046-1
  34. Schnittka, C., & Bell, R. (2009). Preservice biology teachers' use of interactive display systems to support reforms-based science instruction. Contemporary Issues in Technology and Teacher Education, 9(2), 131-159.
  35. Schon, D. A. (1983). The reflective practitioner. New York: Basic Books.
  36. UNESCO. (2018). A global framework of reference on digital literacy skills for indicator 4.4.2. Information Paper No. 51. Retrieved from https://uis.unesco.org/sites/default/files/documents/ip51-global-framework-reference-digital-literacy-skills-2018-en.pdf
  37. UNESCO. (2021). Reimagining our futures together: A new social contract for education. France: the United Nations Educational, Scientific and Cultural Organization. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000379707
  38. Valanides, N., & Angeli, C. (2008a). Professional development for computer-enhanced learning: A case study with science teachers. Research in Science & Technological Education, 26(1), 3-12. https://doi.org/10.1080/02635140701847397
  39. Valanides, N., & Angeli, C. (2008b). Distributed cognition in a sixth-grade classroom: An attempt to overcome alternative conceptions about light and color. Journal of Research on Technology in Education, 40(3), 309-336.
  40. Wekerle, C., & Kollar, I. (2022). Using technology to promote student learning? An analysis of pre- and in-service teachers' lesson plans. Technology, Pedagogy and Education, 31(5), 597-614. https://doi.org/10.1080/1475939X.2022.2083669
  41. Yeh, Y. F., Chan, K. K. H., & Hsu, Y. S. (2021). Toward a framework that connects individual TPACK and collective TPACK: A systematic review of TPACK studies investigating teacher collaborative discourse in the learning by design process. Computer & Education, 171, 104238.
  42. Zhao, Y., Pugh, K., Sheldon, S., & Byers, J. L. (2002). Conditions for classroom technology innovations. Teachers College Record, 104(3), 482-515. https://doi.org/10.1111/1467-9620.00170