DOI QR코드

DOI QR Code

NOX4 and its association with myeloperoxidase and osteopontin in regulating endochondral ossification

  • Kayoung Ko (BK21 Four Project, Department of Medical Sciences, Soonchunhyang University) ;
  • Seohee Choi (BK21 Four Project, Department of Medical Sciences, Soonchunhyang University) ;
  • Miri Jo (BK21 Four Project, Department of Medical Sciences, Soonchunhyang University) ;
  • Chaeyoung Kim (BK21 Four Project, Department of Medical Sciences, Soonchunhyang University) ;
  • Napissara Boonpraman (Department of Translational Neuroscience, College of Human Medicine, Michigan State University) ;
  • Jihyun Youm (Department of Gerontology, Graduate School of East-West Medical Science, Kyunghee University) ;
  • Sun Shin Yi (BK21 Four Project, Department of Medical Sciences, Soonchunhyang University)
  • Received : 2024.02.26
  • Accepted : 2024.05.13
  • Published : 2024.07.31

Abstract

Importance: Endochondral ossification plays an important role in skeletal development. Recent studies have suggested a link between increased intracellular reactive oxygen species (ROS) and skeletal disorders. Moreover, previous studies have revealed that increasing the levels of myeloperoxidase (MPO) and osteopontin (OPN) while inhibiting NADPH oxidase 4 (NOX4) can enhance bone growth. This investigation provides further evidence by showing a direct link between NOX4 and MPO, OPN in bone function. Objective: This study investigates NOX4, an enzyme producing hydrogen peroxide, in endochondral ossification and bone remodeling. NOX4's role in osteoblast formation and osteogenic signaling pathways is explored. Methods: Using NOX4-deficient (NOX4-/-) and ovariectomized (OVX) mice, we identify NOX4's potential mediators in bone maturation. Results: NOX4-/- mice displayed significant differences in bone mass and structure. Compared to the normal Control and OVX groups. Hematoxylin and eosin staining showed NOX4-/- mice had the highest trabecular bone volume, while OVX had the lowest. Proteomic analysis revealed significantly elevated MPO and OPN levels in bone marrow-derived cells in NOX4-/- mice. Immunohistochemistry confirmed increased MPO, OPN, and collagen II (COLII) near the epiphyseal plate. Collagen and chondrogenesis analysis supported enhanced bone development in NOX4-/- mice. Conclusions and Relevance: Our results emphasize NOX4's significance in bone morphology, mesenchymal stem cell proteomics, immunohistochemistry, collagen levels, and chondrogenesis. NOX4 deficiency enhances bone development and endochondral ossification, potentially through increased MPO, OPN, and COLII expression. These findings suggest therapeutic implications for skeletal disorders.

Keywords

Acknowledgement

This research was supported by the National Research Foundation (NRF) NRF-2018R1D1A3B07047960, and Soonchunhyang University Research Fund.

References

  1. Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40(1):46-62.
  2. Agirdil Y. The growth plate: a physiologic overview. EFORT Open Rev. 2020;5(8):498-507.
  3. Bobick BE, Kulyk WM. Regulation of cartilage formation and maturation by mitogen-activated protein kinase signaling. Birth Defects Res C Embryo Today. 2008;84(2):131-154.
  4. Schroder K. NADPH oxidases in bone homeostasis and osteoporosis. Free Radic Biol Med. 2019;132:67-72.
  5. Joo JH, Huh JE, Lee JH, Park DR, Lee Y, Lee SG, et al. A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase. Sci Rep. 2016;6(1):22389.
  6. Cerqueni G, Scalzone A, Licini C, Gentile P, Mattioli-Belmonte M. Insights into oxidative stress in bone tissue and novel challenges for biomaterials. Mater Sci Eng C. 2021;130:112433.
  7. Tao H, Ge G, Liang X, Zhang W, Sun H, Li M, et al. ROS signaling cascades: dual regulations for osteoclast and osteoblast. Acta Biochim Biophys Sin (Shanghai). 2020;52(10):1055-1062.
  8. Bai Y, Gong X, Dou C, Cao Z, Dong S. Redox control of chondrocyte differentiation and chondrogenesis. Free Radic Biol Med. 2019;132:83-89.
  9. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55(1):373-399.
  10. Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-2574.
  11. Pecchillo Cimmino T, Ammendola R, Cattaneo F, Esposito G. NOX dependent ROS generation and cell metabolism. Int J Mol Sci. 2023;24(3):2086.
  12. Vermot A, Petit-Hartlein I, Smith SM, Fieschi F. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants. 2021;10(6):890.
  13. Chen JR, Lazarenko OP, Blackburn ML, Chen JF, Randolph CE, Zabaleta J, et al. Nox4 expression in osteoprogenitors controls bone development in mice during early life. Commun Biol. 2022;5(1):583.
  14. Goettsch C, Babelova A, Trummer O, Erben RG, Rauner M, Rammelt S, et al. NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J Clin Invest. 2013;123(11):4731-4738.
  15. Harrison C. Bone disorders: targeting NOX4 knocks down osteoporosis. Nat Rev Drug Discov. 2013;12(12):904-905.
  16. Morel F, Rousset F, Vu Chuong Nguyen M, Trocme C, Grange L, Lardy B. NADPH oxidase Nox4, a putative therapeutic target in osteoarthritis. Bull Acad Natl Med. 2015;199(4-5):673-686.
  17. Ambe K, Watanabe H, Takahashi S, Nakagawa T. Immunohistochemical localization of Nox1, Nox4 and Mn-SOD in mouse femur during endochondral ossification. Tissue Cell. 2014;46(6):433-438.
  18. Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5(1):a008334.
  19. Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development. 2015;142(5):817-831.
  20. Berendsen AD, Olsen BR. Bone development. Bone. 2015;80:14-18.
  21. Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. BioMed Res Int. 2020;2020:6910312.
  22. Datta HK, Ng WF, Walker JA, Tuck SP, Varanasi SS. The cell biology of bone metabolism. J Clin Pathol. 2008;61(5):577-587.
  23. Franz-Odendaal TA. Induction and patterning of intramembranous bone. Front Biosci (Landmark Ed). 2011;16(7):2734-2746.
  24. Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn. 2021;250(3):414-449.
  25. Safadi FF, Barbe MF, Abdelmagid SM, Rico MC, Aswad RA, Litvin J, et al. Bone structure, development and bone biology. In: Khurana JS, editor. Bone Pathology. Humana Totowa: Humana Press; 2009, 1-50.
  26. Chen JR, Lazarenko OP, Zhao H, Wankhade UD, Pedersen K, Watt J, et al. Nox4 expression is not required for OVX-induced osteoblast senescence and bone loss in mice. JBMR Plus. 2020;4(8):e10376.
  27. Zhao X, Lin S, Li H, Si S, Wang Z. Myeloperoxidase controls bone turnover by suppressing osteoclast differentiation through modulating reactive oxygen species level. J Bone Miner Res. 2021;36(3):591-603.
  28. Ishijima M, Rittling SR, Yamashita T, Tsuji K, Kurosawa H, Nifuji A, et al. Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med. 2001;193(3):399-404.
  29. Si J, Wang C, Zhang D, Wang B, Zhou Y. Osteopontin in bone metabolism and bone diseases. Med Sci Monit. 2020;26:e919159.
  30. Chen J, Singh K, Mukherjee BB, Sodek J. Developmental expression of osteopontin (OPN) mRNA in rat tissues: evidence for a role for OPN in bone formation and resorption. Matrix. 1993;13(2):113-123.
  31. Khan AA, Alsahli MA, Rahmani AH. Myeloperoxidase as an active disease biomarker: recent biochemical and pathological perspectives. Med Sci (Basel). 2018;6(2):33.
  32. Boonpraman N, Yoon S, Kim CY, Moon JS, Yi SS. NOX4 as a critical effector mediating neuroinflammatory cytokines, myeloperoxidase and osteopontin, specifically in astrocytes in the hippocampus in Parkinson's disease. Redox Biol. 2023;62:102698.
  33. Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;13:1057-1073.
  34. Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, et al. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells. 2022;11(3):552.
  35. Del Valle LG. Oxidative stress in aging: theoretical outcomes and clinical evidences in humans. Biomed Aging Pathol. 2011;1(1):1-7.
  36. DeNichilo MO, Shoubridge AJ, Panagopoulos V, Liapis V, Zysk A, Zinonos I, et al. Peroxidase enzymes regulate collagen biosynthesis and matrix mineralization by cultured human osteoblasts. Calcif Tissue Int. 2016;98(3):294-305.
  37. Ramp WK, Arnold RR, Russell JE, Yancey JM. Hydrogen peroxide inhibits glucose metabolism and collagen synthesis in bone. J Periodontol. 1987;58(5):340-344.
  38. Baldus S, Eiserich JP, Mani A, Castro L, Figueroa M, Chumley P, et al. Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J Clin Invest. 2001;108(12):1759-1770.
  39. Cox G, Einhorn TA, Tzioupis C, Giannoudis PV. Bone-turnover markers in fracture healing. J Bone Joint Surg Br. 2010;92(3):329-334.
  40. Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 2015;24(10):1150-1163.