DOI QR코드

DOI QR Code

Chamaeneron angustifolia 추출물이 3T3-L1 Preadipocyte의 지방대사 및 분화에 미치는 영향

Effects of Chamaeneron angustifolia Extract on Lipid Metabolism and Differentiation of 3T3-L1 Preadipocyte

  • 이슬비 (대구한의대학교 한의과대학 본초약리학교실) ;
  • 최문열 (대구한의대학교 한의과대학 본초약리학교실) ;
  • 김미형 (대구한의대학교 한의과대학 본초약리학교실) ;
  • 김소영 (대구한의대학교 한의과대학 본초약리학교실) ;
  • 김미려 (대구한의대학교 한의과대학 본초약리학교실)
  • Seul Bi Lee (Department of Herbal Pharmacology, College of Korean Medicine, Daegu Haany University) ;
  • Moon-Yeol Choi (Department of Herbal Pharmacology, College of Korean Medicine, Daegu Haany University) ;
  • Mi Hyung Kim (Department of Herbal Pharmacology, College of Korean Medicine, Daegu Haany University) ;
  • So-Young Kim (Department of Herbal Pharmacology, College of Korean Medicine, Daegu Haany University) ;
  • Mi Ryeo Kim (Department of Herbal Pharmacology, College of Korean Medicine, Daegu Haany University)
  • 투고 : 2024.06.10
  • 심사 : 2024.07.25
  • 발행 : 2024.07.30

초록

Objectives : Obesity is an imbalance between energy intake and consumption due to overeating and lack of exercise, and if it persists, it increases non-infectious diseases such as high blood pressure, diabetes, and hyperlipidemia. In this study, we tried to investigate the possibility of using Chamaeneron angustifolia (CA) as a material for anti-obesity by confirming the effect of inhibiting lipid differentiation. Methods : We measured the effects of CA extract on oil-red-o staining, cell cytotoxicity evaluation activity using 3T3-L1 cells. Additionally, we assessed fat decomposition and metabolism-related protein expression through Western blot analysis. Results : In this study, the anti-obesity effects of CA extract were experimentally assessed. Results showed significant inhibition of adipocyte differentiation and accumulation at concentrations of 0.05, 0.1, and 0.2 mg/ml of oil-red-o staining, with reductions of 80% or more. CA notably increased the phosphorylation of AMPK protein expression compared to the control group across all concentrations. Additionally, phosphorylation of ACC significantly increased at a concentration of 0.2 mg/ml compared to the control. PPAR-γ, which regulates adipogenesis, exhibited a significant decrease compared to the control, while protein expression of CPT-1, involved in fatty acid oxidation, showed a concentration-dependent increase across all groups. Therefore, CA extract demonstrates potential as a functional material for anti-obesity by increasing the expression of proteins related to fat decomposition and synthesis while decreasing others. Conclusions : These results suggest that CA may also be useful as an anti-obesity functional substance.

키워드

과제정보

이 논문은 농촌진흥청(PJ015272032021)과 한국연구재단(2021R1A2C201471711)의 지원을 받아 수행된 연구입니다.

참고문헌

  1. Choi MY, Kim SY, Kim MR. Basic research for exploring anti-obesity activity of several medicinal plants from mongolia. Kor J Herbology. 2023 ; 38(3) : 1-10. 
  2. Pasichnik EA, Paukshta OL, Nikolaev VG, Tsvetov NS. Extraction of bioactive components from chamaenerion angustifolium (L.) herb growing in kola peninsula using deep eutectic solvents. IOP Conf Ser Earth Environ Sci. 2022 ; 981(3) : 032080. https://doi.org/10.1088/1755-1315/981/3/032080. 
  3. Adamczak A, Dreger M, Seidler-Lozykowska K, Wielgus K. Fireweed (L.): botany, phytochemistry and traditional uses. A review. Herba Polonica. 2019 ; 65(3) : 51-63. https://doi.org/10.2478/hepo-2019-0018. 
  4. Toth BH, Blazics B, Kery A. Polyphenol composition and antioxidant capacity of epilobium species. J Pharm Biomed Anal. 2009 ; 49(1) : 26-31. https://doi.org/10.1016/j.jpba.2008.09.047. 
  5. kiss AK, Bazylko A, Filipek A, Granica S, Jaszewska E, Kiarszys U, Kosmider A, Piwowarski J. Oenothein b's contribution to the anti-inflammatory and antioxidant activity of Epilobium sp. Phytomedicine. 2011 ; 18(7) : 557-60. https://doi.org/10.1016/j.phymed.2010.10.016. 
  6. Schepetkin IA, Kirpotina LN, Jakiw L, Khlebnikov AI, Blaskovich CL, Jutila MA, Quinn MT. Immunomodulatory activity of oenothein b Isolated from epilobium angustifolium. J Immunol . 2009 ; 183 : 6754-66. https://doi.org/10.4049/jimmunol.0901827. 
  7. Kaskoniene V, Stankevicius M, Drevinskas T, Akuneca I, Kaskonas P, Bimbiraite-Surviliene K, Maruska A, Ragazinskiene O, Kornysova O, Briedis V, Ugenskiene R. Evaluation of phytochemical composition of fresh and dried raw material of introduced chamerion angustifolium L. using chromatographic, spectrophotometric and chemometric techniques. Phytochemistry. 2015 ; 115 :184-93, https://doi.org/10.1016/j.phytochem.2015.02.005. 
  8. Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ. Obesity II: Establishing causal links between chemical exposures and obesity, Biochem Pharmacology. 2022 ; 199 : 115015. https://doi.org/10.1016/j.bcp.2022.115015. 
  9. Camacho S. Ruppel A. Is the calorie concept a real solution to the obesity epidemic?. Global Health Action. 2017 ; 10 (1) : 1289650. https://doi.org/10.1080/16549716.2017.1289650. 
  10. Kim WI, Youn DH, Kim HG, Na CS. Effect of pear extracts containing herbal medicine(Lycii Fructus, Coicis Semen, Alimatis Rhizoma and Astragali Radix) on body weight, lipid metabolism and immuneresponses in rats fed high fat diets (II). Kor J Herbology, 2012 ; 27 : 1-7. https://doi.org/10.6116/kjh.2012.27.3.7. 
  11. Son JW. Recent advances in anti-obesity drugs. J Korean Diabetes. 2022 ; 23(2) : 113-27. https://doi.org/10.4093/jkd.2022.23.2.113. 
  12. Srivastava G, Apovian C. Future pharmacotherapy for obesity: new anti-obesity drugs on the horizon. Curr Obes Rep. 2018 ; 7 : 147-61. https://doi.org/10.1007/s13679-018-0300-4. 
  13. Blois MS. Antioxidant determination by the use of stable free radical. Nature. 1958 ; 181 : 1199-200. https://doi.org/10.1038/1811199a0. 
  14. Schmidt FM, Weschenfelder J, Sander C, Minkwitz J, Thormann J, Chittka T, Mergl R, Kirkby KC, Fasshauer M, Stumvoll M, Holdt LM, Teupser D, Hegerl U, Himmerich H. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. Plos One. 2015 ; 10(3) : e0121971.https://doi.org/10.1371/journal.pone.0121971. 
  15. De Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clinical Chemistry. 2008 ; 54(6) : 945-55. https://doi.org/10.1373/clinchem.2007.100156. 
  16. Feng S, Reuss L, Wang Y. Potential of natural products in the inhibition of adipogenesis through regulation of PPARγ expression and/or its transcriptional activity. Molecules. 2016 ; 21(10) : 1278. https://doi.org/10.3390/molecules21101278. 
  17. Jakab J, Miskic B, Miksic S, Juranic B, Cosic V, Schwarz D, Vcev A. Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural products. Diabetes Metab Syndr Obes. 2021 ; 14 : 67-83. https://doi.org/10.2147/ DMSO.S281186. 
  18. Tak YJ, Lee SY. Anti-obesity drugs: long-term efficacy and safety: an updated review. World J Mens Health. 2021 ; 39(2) : 208-21. 
  19. Panickar KS. Effects of dietary polyphenols on neuroregulatory factors and pathways that mediate food intake and energy regulation in obesity. Mol Nutr Food Res. 2013 ; 57 : 34-47. https://doi.org/10.1002/mnfr.201200431. 
  20. Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Med Sci. 2021 ; 22(7) : 3380. https://doi.org/10.3390/ijms22073380. 
  21. Zebisch K, Voigt V, Wabitsch M, Brandsch M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes, Anal Biochem. 2012 ; 425 : 88-90. https://doi.org/10.1016/j.ab.2012.03.005. 
  22. Choi HM, Moon SO, Lee HH, Lee HD. Inhibitory effect of by Ojeok-san lipid accumulation in high fat diet-induced obesity mice and 3T3-L1 adipocytes. Kor J Herbology. 2015 ; 30 : 121-8. https://doi.org/10.6116/kjh.2015.30.4.121.