DOI QR코드

DOI QR Code

Positive Effects of Adiponectin, BDNF, and GLP-1 on Cortical Neurons Counteracting Palmitic Acid Induced Neurotoxicity

  • Danbi Jo (Department of Anatomy, Chonnam National University Medical School) ;
  • Seo Yeon Ahn (Department of Anatomy, Chonnam National University Medical School) ;
  • Seo Yoon Choi (Department of Anatomy, Chonnam National University Medical School) ;
  • Yoonjoo Choi (Department of MRC, Chonnam National University Medical School) ;
  • Dong Hoon Lee (Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital) ;
  • Juhyun Song (Department of Anatomy, Chonnam National University Medical School)
  • Received : 2024.03.20
  • Accepted : 2024.04.21
  • Published : 2024.04.30

Abstract

The prevalence of metabolic syndrome caused by diets containing excessive fatty acids is increasing worldwide. Patients with metabolic syndrome exhibit abnormal lipid profiles, chronic inflammation, increased levels of saturated fatty acids, impaired insulin sensitivity, excessive fat accumulation, and neuropathological issues such as memory deficits. In particular, palmitic acid (PA) in saturated fatty acids aggravates inflammation, insulin resistance, impaired glucose tolerance, and synaptic failure. Recently, adiponectin, brain-derived neurotrophic factor (BDNF), and glucose-like peptide-1 (GLP-1) have been investigated to find therapeutic solutions for metabolic syndrome, with findings suggesting that they are involved in insulin sensitivity, enhanced lipid profiles, increased neuronal survival, and improved synaptic plasticity. We investigated the effects of adiponectin, BDNF, and GLP-1 on neurite outgrowth, length, and complexity in PA-treated primary cortical neurons using Sholl analysis. Our findings demonstrate the therapeutic potential of adiponectin, BDNF, and GLP-1 in enhancing synaptic plasticity within brains affected by metabolic imbalance. We underscore the need for additional research into the mechanisms by which adiponectin, BDNF, and GLP-1 influence neural complexity in brains with metabolic imbalances.

Keywords

Acknowledgement

Figure 1 was created using BioRender (https://www.biorender.com/).

References

  1. Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol 2017;960:1-17.
  2. Pan Y, Hui X, Hoo RL, Ye D, Chan CY, Feng T, Wang Y, Lam KS, Xu A. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest 2019;129:834-49.
  3. Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, Lefevre AL, Cruciani-Guglielmacci C, Magnan C, Yu F, Niswender K, Irani BG, Holland WL, Clegg DJ. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 2009;119:2577-89.
  4. Amine H, Benomar Y, Taouis M. Palmitic acid promotes resistin-induced insulin resistance and inflammation in SH-SY5Y human neuroblastoma. Sci Rep 2021;11:5427.
  5. Hernandez-Caceres MP, Toledo-Valenzuela L, Diaz-Castro F, Avalos Y, Burgos P, Narro C, Pena-Oyarzun D, Espinoza-Caicedo J, Cifuentes-Araneda F, Navarro-Aguad F, Riquelme C, Troncoso R, Criollo A, Morselli E. Palmitic acid reduces the autophagic flux and insulin sensitivity through the activation of the free fatty acid receptor 1 (FFAR1) in the hypothalamic neuronal cell line N43/5. Front Endocrinol (Lausanne) 2019;10:176.
  6. Melo HM, Seixas da Silva GD, Sant'Ana MR, Teixeira CV, Clarke JR, Miya Coreixas VS, de Melo BC, Fortuna JT, Forny-Germano L, Ledo JH, Oliveira MS, Figueiredo CP, Pardossi-Piquard R, Checler F, Delgado-Garcia JM, Gruart A, Velloso LA, Balthazar ML, Cintra DE, Ferreira ST, De Felice FG. Palmitate is increased in the cerebrospinal fluid of humans with obesity and induces memory impairment in mice via pro-inflammatory TNF-α. Cell Reports 2020;30:2180-2194.e8.
  7. Qiu T, Yang X, Wang J, Pan C, Chu X, Xiong J, Xie J, Chang Y, Wang C, Zhang J. Obesity-induced elevated palmitic acid promotes inflammation and glucose metabolism disorders through GPRs/NF-κB/KLF7 pathway. Nutr Diabetes 2022;12:23.
  8. Jo D, Yoon G, Song J. Role of exendin-4 in brain insulin resistance, mitochondrial function, and neurite outgrowth in neurons under palmitic acid-induced oxidative stress. Antioxidants 2021;10:78.
  9. Gariballa S, Alkaabi J, Yasin J, Al Essa A. Total adiponectin in overweight and obese subjects and its response to visceral fat loss. BMC Endocr Disord 2019;19:55.
  10. Woodward L, Akoumianakis I, Antoniades C. Unravelling the adiponectin paradox: novel roles of adiponectin in the regulation of cardiovascular disease. Br J Pharmacol 2017;174:4007-20.
  11. Cisternas P, Martinez M, Ahima RS, William Wong G, Inestrosa NC. Modulation of glucose metabolism in hippocampal neurons by adiponectin and resistin. Mol Neurobiol 2019;56:3024-37.
  12. Waragai M, Adame A, Trinh I, Sekiyama K, Takamatsu Y, Une K, Masliah E, Hashimoto M. Possible involvement of adiponectin, the anti-diabetes molecule, in the pathogenesis of Alzheimer's disease. J Alzheimers Dis 2016;52:1453-9.
  13. Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R, Gundelfinger ED, Kojima M, Nestel S, Frotscher M, Barde YA. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol 2012;196:775-88. 
  14. Sandrini L, Di Minno A, Amadio P, Ieraci A, Tremoli E, Barbieri SS. Association between obesity and circulating brain-derived neurotrophic factor (BDNF) levels: systematic review of literature and meta-analysis. Int J Mol Sci 2018;19:2281.
  15. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 2013;14:7-23.
  16. Antonsen KK, Klausen MK, Brunchmann AS, le Dous N, Jensen ME, Miskowiak KW, Fisher PM, Thomsen GK, Rindom H, Fahmy TP, Vollstaedt-Klein S, Benveniste H, Volkow ND, Becker U, Ekstrom C, Knudsen GM, Vilsboll T, Fink-Jensen A. Does glucagon-like peptide-1 (GLP-1) receptor agonist stimulation reduce alcohol intake in patients with alcohol dependence: study protocol of a randomised, double-blinded, placebo-controlled clinical trial. BMJ Open 2018;8:e019562.
  17. Popoviciu MS, Paduraru L, Yahya G, Metwally K, Cavalu S. Emerging role of GLP-1 agonists in obesity: a comprehensive review of randomised controlled trials. Int J Mol Sci 2023;24:10449.
  18. Nauck MA, Muller TD. Incretin hormones and type 2 diabetes. Diabetologia 2023;66:1780-95.
  19. Perry T, Lahiri DK, Sambamurti K, Chen D, Mattson MP, Egan JM, Greig NH. Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J Neurosci Res 2003;72:603-12.
  20. Perry T, Lahiri DK, Chen D, Zhou J, Shaw KT, Egan JM, Greig NH. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther 2002;300:958-66.
  21. Vrang N, Hansen M, Larsen PJ, Tang-Christensen M. Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamic nuclei. Brain Res 2007;1149:118-26.
  22. Chen XY, Chen L, Yang W, Xie AM. GLP-1 suppresses feeding behaviors and modulates neuronal electrophysiological properties in multiple brain regions. Front Mol Neurosci 2021;14:793004.
  23. Williams DL, Lilly NA, Edwards IJ, Yao P, Richards JE, Trapp S. GLP-1 action in the mouse bed nucleus of the stria terminalis. Neuropharmacology 2018;131:83-95.
  24. Yoon G, Kim YK, Song J. Glucagon-like peptide-1 suppresses neuroinflammation and improves neural structure. Pharmacol Res 2020;152:104615.
  25. Holscher C. Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer's and Parkinson's disease models. Neuropharmacology 2018;136:251-9.
  26. Zhang Y, Xue R, Zhang Z, Yang X, Shi H. Palmitic and linoleic acids induce ER stress and apoptosis in hepatoma cells. Lipids Health Dis 2012;11:1.
  27. Bohlouli S, Khazaei M, Teshfam M, Hassanpour H. Adiponectin effect on the viability of human endometrial stromal cells and mRNA expression of adiponectin receptors. Int J Fertil Steril 2013;7:43-8.
  28. Jourdi H, Kabbaj M. Acute BDNF treatment upregulates GluR1-SAP97 and GluR2-GRIP1 interactions: implications for sustained AMPA receptor expression. PLoS One 2013;8:e57124.
  29. Hao S, Dey A, Yu X, Stranahan AM. Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun 2016;51:230-9.
  30. Tsao TS, Lodish HF, Fruebis J. ACRP30, a new hormone controlling fat and glucose metabolism. Eur J Pharmacol 2002;440:213-21.
  31. Kishore U, Reid KB. C1q: structure, function, and receptors. Immunopharmacology 2000;49:159-70.
  32. Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 2002;13:84-9.
  33. Fry M, Smith PM, Hoyda TD, Duncan M, Ahima RS, Sharkey KA, Ferguson AV. Area postrema neurons are modulated by the adipocyte hormone adiponectin. J Neurosci 2006;26:9695-702.
  34. Ali T, Rehman SU, Khan A, Badshah H, Abid NB, Kim MW, Jo MH, Chung SS, Lee HG, Rutten BP, Kim MO. Adiponectin-mimetic novel nonapeptide rescues aberrant neuronal metabolic-associated memory deficits in Alzheimer's disease. Mol Neurodegener 2021;16:23.
  35. Pousti F, Ahmadi R, Mirahmadi F, Hosseinmardi N, Rohampour K. Adiponectin modulates synaptic plasticity in hippocampal dentate gyrus. Neurosci Lett 2018;662:227-32.
  36. Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH, Lee HY, Kim MO. Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer's disease neuropathological deficits. Mol Psychiatry 2017;22:407-16.
  37. Zhang D, Wang X, Wang B, Garza JC, Fang X, Wang J, Scherer PE, Brenner R, Zhang W, Lu XY. Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors. Mol Psychiatry 2017;22:1044-55.
  38. Zhang D, Wang X, Lu XY. Adiponectin exerts neurotrophic effects on dendritic arborization, spinogenesis, and neurogenesis of the dentate gyrus of male mice. Endocrinology 2016;157:2853-69.
  39. Rauti R, Cellot G, D'Andrea P, Colliva A, Scaini D, Tongiorgi E, Ballerini L. BDNF impact on synaptic dynamics: extra or intracellular long-term release differently regulates cultured hippocampal synapses. Mol Brain 2020;13:43.
  40. Sun Y, Lim Y, Li F, Liu S, Lu JJ, Haberberger R, Zhong JH, Zhou XF. ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS One 2012;7:e35883.
  41. Christel CM, Denardo DF. Absence of exendin-4 effects on postprandial glucose and lipids in the Gila monster, Heloderma suspectum. J Comp Physiol B 2007;177:129-34.
  42. De Leon DD, Crutchlow MF, Ham JY, Stoffers DA. Role of glucagon-like peptide-1 in the pathogenesis and treatment of diabetes mellitus. Int J Biochem Cell Biol 2006;38:845-59.
  43. Zago AM, Carvalho FB, Rahmeier FL, Santin M, Guimaraes GR, Gutierres JM, da C Fernandes M. Exendin-4 prevents memory loss and neuronal death in rats with sporadic Alzheimer-like disease. Mol Neurobiol 2024;61:2631-52.
  44. Gumuslu E, Mutlu O, Celikyurt IK, Ulak G, Akar F, Erden F, Ertan M. Exenatide enhances cognitive performance and upregulates neurotrophic factor gene expression levels in diabetic mice. Fundam Clin Pharmacol 2016;30:376-84.
  45. Zhao F, Li J, Wang R, Xu H, Ma K, Kong X, Sun Z, Niu X, Jiang J, Liu B, Li B, Duan F, Chen X. Exendin-4 promotes actin cytoskeleton rearrangement and protects cells from Nogo-A-Δ20 mediated spreading inhibition and growth cone collapse by down-regulating RhoA expression and activation via the PI3K pathway. Biomed Pharmacother 2019;109:135-43.
  46. Wang M, Yoon G, Song J, Jo J. Exendin-4 improves long-term potentiation and neuronal dendritic growth in vivo and in vitro obesity condition. Sci Rep 2021;11:8326.
  47. Yang JL, Lin YT, Chen WY, Yang YR, Sun SF, Chen SD. The neurotrophic function of glucagon-like peptide-1 promotes human neuroblastoma differentiation via the PI3K-AKT axis. Biology (Basel) 2020;9:348.
  48. Zheng J, Xie Y, Ren L, Qi L, Wu L, Pan X, Zhou J, Chen Z, Liu L. GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer's disease. Mol Metab 2021;47:101180.
  49. Gault VA, Holscher C. GLP-1 agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid. Eur J Pharmacol 2008;587:112-7.
  50. During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X, Bland RJ, Klugmann M, Banks WA, Drucker DJ, Haile CN. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 2003;9:1173-9.
  51. Lin D, Sturgeon KM, Gordon BR, Brown JC, Sears DD, Sarwer DB, Schmitz KH. WISER survivor trial: combined effect of exercise and weight loss interventions on adiponectin and leptin levels in breast cancer survivors with overweight or obesity. Nutrients 2023;15:3453.
  52. Ribeiro D, Petrigna L, Pereira FC, Muscella A, Bianco A, Tavares P. The impact of physical exercise on the circulating levels of BDNF and NT 4/5: a review. Int J Mol Sci 2021;22:22.
  53. Sandsdal RM, Juhl CR, Jensen SB, Lundgren JR, Janus C, Blond MB, Rosenkilde M, Bogh AF, Gliemann L, Jensen JB, Antoniades C, Stallknecht BM, Holst JJ, Madsbad S, Torekov SS. Combination of exercise and GLP-1 receptor agonist treatment reduces severity of metabolic syndrome, abdominal obesity, and inflammation: a randomized controlled trial. Cardiovasc Diabetol 2023;22:41.