Acknowledgement
본 연구는 한국연구재단(RS-2023-00246767_2)의 지원을 받아 수행되었습니다. 이에 감사드립니다.
References
- Addor, N., Newman, A.J., Mizukami, N., and Clark, M.P. (2017). "The CAMELS data set: Catchment attributes and meteorology for large-sample studies." Hydrology and Earth System Sciences, Vol. 21, No. 10, pp. 5293-5313. https://doi.org/10.5194/hess-21-5293-2017
- Beck, H.E., Vergopolan, N., Pan, M., Levizzani, V., Van Dijk, A.I., Weedon, G.P., Brocca, L., Pappenberger, F., Huffman, G.J., and Wood, E.F. (2017). "Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling." Hydrology and Earth System Sciences, Vol. 21, No. 12, pp. 6201-6217. https://doi.org/10.5194/hess-21-6201-2017
- Bloschl, G., and Sivapalan, M. (1995). "Scale issues in hydrological modelling: A review." Hydrological Processes, Vol. 9, No. 3-4, pp. 251-290. https://doi.org/10.1002/hyp.3360090305
- Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., and Askell, A. (2020). "Language models are few-shot learners." Advances in Neural Information Processing Systems, Vol. 33, pp. 1877-1901.
- Brunner, M.I., Slater, L., Tallaksen, L.M., and Clark, M. (2021). "Challenges in modeling and predicting floods and droughts: A review" Wiley Interdisciplinary Reviews: Water, Vol. 8, No. 3, e1520.
- Chen, C., Hui, Q., Xie, W., Wan, S., Zhou, Y., and Pei, Q. (2021). "Convolutional Neural Networks for forecasting flood process in Internet-of-Things enabled smart city." Computer Networks, Vol. 186, 107744.
- Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint, arXiv:1810.04805.
- Ding, Y., Zhu, Y., Feng, J., Zhang, P., and Cheng, Z. (2020). "Interpretable spatio-temporal attention LSTM model for flood forecasting." Neurocomputing, Vol. 403, pp. 348-359. https://doi.org/10.1016/j.neucom.2020.04.110
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and Gelly, S. (2020). "An image is worth 16x16 words: Transformers for image recognition at scale" arXiv preprint, arXiv: 2010.11929.
- Fang, K., Kifer, D., Lawson, K., Feng, D., and Shen, C. (2022). "The data synergy effects of time-series deep learning models in hydrology." Water Resources Research, Vol. 58, No. 4, e2021 WR029583.
- Gao, S., Zhang, S., Huang, Y., Han, J., Luo, H., Zhang, Y., and Wang, G. (2022). "A new seq2seq architecture for hourly runoff prediction using historical rainfall and runoff as input." Journal of Hydrology, Vol. 612, 128099.
- Gupta, H., Perrin, C., Bloschl, G., Montanari, A., Kumar, R., Clark, M., and Andreassian, V. (2014). "Large-sample hydrology: A need to balance depth with breadth." Hydrology and Earth System Sciences, Vol. 18, No. 2, pp. 463-477. https://doi.org/10.5194/hess-18-463-2014
- Gupta, H.V., Kling, H., Yilmaz, K.K., and Martinez, G.F. (2009). "Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling." Journal of Hydrology, Vol. 377, No. 1-2, pp. 80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003
- Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, No. 8, pp. 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Jeong, J., and Park, E. (2019). "Comparative applications of datadriven models representing water table fluctuations." Journal of Hydrology, Vol. 572, pp. 261-273. https://doi.org/10.1016/j.jhydrol.2019.02.051
- Jun, H., and Lee, J. (2013). "A methodology for flood forecasting and warning based on the characteristic of observed water levels between upstream and downstream." Journal of the Korean Society of Hazard Mitigation, Vol. 13, No. 6, pp. 367-374. https://doi.org/10.9798/KOSHAM.2013.13.6.367
- Jung, J., Mo, H., Lee, J., Yoo, Y., and Kim, H.S. (2021). "Flood stage forecasting at the Gurye-Gyo station in Sumjin River Using LSTM-based deep learning models." Journal of the Korean Society of Hazard Mitigation, Vol. 21, No. 3, pp. 193-201. https://doi.org/10.9798/KOSHAM.2021.21.3.193
- Jung, S., Lee, D., and Lee, K. (2018). "Prediction of river water level using deep-learning open library." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 1, pp. 1-11.
- Kao, I.-F., Zhou, Y., Chang, L.-C., and Chang, F.-J. (2020). "Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting." Journal of Hydrology, Vol. 583, 124631.
- Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M. (2018). "Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks." Hydrology and Earth System Sciences, Vol. 22, No. 11, pp. 6005-6022. https://doi.org/10.5194/hess-22-6005-2018
- Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G. (2019). "Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets." Hydrology and Earth System Sciences, Vol. 23, No. 12, pp. 5089-5110. https://doi.org/10.5194/hess-23-5089-2019
- Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., and Nevo, S. (2023). "Caravan-A global community dataset for large-sample hydrology." Scientific Data, Vol. 10, No. 1, 61.
- LeCun, Y., Bengio, Y., and Hinton, G. (2015). "Deep learning." Nature, Vol. 521, No. 7553, pp. 436-444. https://doi.org/10.1038/nature14539
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF International Conference on Computer Vision, Microsoft Research Asia, pp. 10012-10022.
- Mok, J.-Y., Choi, J.-H., and Moon, Y.-I. (2020). "Prediction of multipurpose dam inflow using deep learning." Journal of Korea Water Resources Association, Vol. 53, No. 2, pp. 97-105. https://doi.org/10.3741/JKWRA.2020.53.2.97
- Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models part I - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
- Nearing, G.S., Kratzert, F., Sampson, A.K., Pelissier, C.S., Klotz, D., Frame, J.M., Prieto, C., and Gupta, H.V. (2021). "What role does hydrological science play in the age of machine learning?" Water Resources Research, Vol. 57, No. 3, e2020WR028091.
- Newman, A.J., Clark, M.P., Sampson, K., Wood, A., Hay, L.E., Bock, A., Viger, R.J., Blodgett, D., Brekke, L., and Arnold, J. (2015). "Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance" Hydrology and Earth System Sciences, Vol. 19, No. 1, pp. 209-223. https://doi.org/10.5194/hess-19-209-2015
- Oudin, L., Andreassian, V., Perrin, C., Michel, C., and Le Moine, N. (2008). "Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments." Water Resources Research, Vol. 44, No. 3, W03413.
- Razavi, T., and Coulibaly, P. (2013). "Streamflow prediction in ungauged basins: review of regionalization methods" Journal of Hydrologic Engineering, Vol. 18, No. 8, pp. 958-975. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690
- Schmidhuber, J. (2015). "Deep learning in neural networks: An overview" Neural Networks, Vol. 61, pp. 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
- Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang, F.-J., Ganguly, S., Hsu, K.-L., Kifer, D., and Fang, Z. (2018). "HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community." Hydrology and Earth System Sciences, Vol. 22, No. 11, pp. 5639-5656. https://doi.org/10.5194/hess-22-5639-2018
- Sivapalan, M., Takeuchi, K., Franks, S.W., Gupta, V.K., Karambiri, H., Lakshmi, V., Liang, X., McDonnell, J.J., Mendiondo, E.M., O'Connell, P.E., Oki, T., Pomeroy, J.W., Schertzer, D., Uhlenbrook, S., and Zehe, E. (2003). "IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences." Hydrological Sciences Journal, Vol. 48, No. 6, pp. 857-880. https://doi.org/10.1623/hysj.48.6.857.51421
- Tuli, S., Casale, G., and Jennings, N.R. (2022). "Tranad: Deep transformer networks for anomaly detection in multivariate time series data." arXiv preprint, arXiv:2201.07284.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., and Polosukhin, I. (2017). "Attention is all you need." Advances in Neural Information Processing Systems, Vol. 30, Long Beach, CA, U.S.
- Wen, Q., He, K., Sun, L., Zhang, Y., Ke, M., and Xu, H. (2021). "RobustPeriod: Robust time-frequency mining for multiple periodicity detection." Proceedings of the 2021 International Conference on Management of Data, China, pp. 2328-2337.
- Wu, H., Xu, J., Wang, J., and Long, M. (2021). "Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting." Advances in Neural Information Processing Systems, Vol. 34, pp. 22419-22430.
- Xu, J., Wu, H., Wang, J., and Long, M. (2021). "Anomaly transformer: Time series anomaly detection with association discrepancy" arXiv preprint, arXiv:2110.02642.
- Xu, Y., Lin, K., Hu, C., Wang, S., Wu, Q., Zhang, L., and Ran, G. (2023). "Deep transfer learning based on transformer for flood forecasting in data-sparse basins." Journal of Hydrology, Vol. 625, 129956.
- Yang, C.-H.H., Tsai, Y.-Y., and Chen, P.-Y. (2021). "Voice2series: Reprogramming acoustic models for time series classification." International Conference on Machine Learning, PMLR, pp. 11808-11819.
- Yin, H., Guo, Z., Zhang, X., Chen, J., and Zhang, Y. (2022). "RRFormer: Rainfall-runoff modeling based on Transformer." Journal of Hydrology, Vol. 609, 127781.
- Yin, H., Zhang, X., Wang, F., Zhang, Y., Xia, R., and Jin, J. (2021). "Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model." Journal of Hydrology, Vol. 598, 126378.
- Yin, H., Zhu, W., Zhang, X., Xing, Y., Xia, R., Liu, J., and Zhang, Y. (2023). "Runoff predictions in new-gauged basins using two transformer-based models" Journal of Hydrology, Vol. 622, 129684.
- Zhang, Y., Chiew, F. H., Li, M., and Post, D. (2018). "Predicting runoff signatures using regression and hydrological modeling approaches." Water Resources Research, Vol. 54, No. 10, pp. 7859-7878. https://doi.org/10.1029/2018WR023325
- Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., and Zhang, W. (2021). "Informer: Beyond efficient transformer for long sequence time-series forecasting." Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, Canada, Vol. 35, No. 12, pp. 11106-11115.