DOI QR코드

DOI QR Code

The Normal Stress of TiO2 Electrorheological Fluid and Its Model Prediction

이산화티타늄 전기유변 유체의 수직 응력과 정전기 분극 모델에 의한 전산모사

  • Young Dae Kim (School of Chemical Engineering, Chonnam National University)
  • 김영대 (전남대학교 화학공학부)
  • Received : 2024.03.04
  • Accepted : 2024.04.20
  • Published : 2024.08.01

Abstract

The normal stress of TiO2 ER fluid under an electric field showed negative values due to the electrostatic attraction force in the normal direction between particles and the absolute value increased dramatically with electric field strengths. The normal yield stress exhibited E2 dependence similar to the dynamic yield stress, indicating that normal stress can be utilized for evaluating the ER effect. Numerical simulation demonstrated good qualitative agreement with the experimental data and suggested that the decrease in the absolute value of normal stress with increasing shear rates was attributed to the rearrangement of particle configurations under shear.

TiO2 전기유변 유체의 수직 응력을 실험적으로 측정하고 전산모사도 수행하였다. 전기장 하에서 수직 응력은 입자 사이의 수직 방향의 정전기 인력에 의해 음수 값을 보였고, 수직 응력의 절대값은 전기장의 증가에 따라 급격하게 상승하였다. 전단 응력에서처럼 수직 항복 응력도 E2에 비례하는 특성을 보여, 수직 응력을 전기유변 현상의 평가에 활용할 수 있음을 나타냈다. 수직 응력의 거동을 이해하기 위해 수행한 전산모사는 수직 응력이 실험 결과와 정성적으로 잘 일치함을 보여 주었다. 또한 전기장 하에서는 전단 속도가 증가함에 따라 수직 응력의 절대값이 줄어드는 경향은 전단 속도에 따른 입자들의 구조 변화로 발생하는 것으로 나타났다.

Keywords

References

  1. Winslow, W. M., "Induced Fibration of Suspensions," J. Appl. Phys., 20, 1137-1140(1949).
  2. Jekal, S., Chu, M., Kim, Y., Noh, J., Kim, J., Kim, H., Oh, W., Otgonbayar, Z. and Yoon, C., "A Study on Enhanced Electrorheological Performance of Plate-like Materials via Percolation Gel-like Effect," Gels, 9(11), 891-903(2023).
  3. Dong, Y., Kim, H. and Choi, H., "Conducting Polymer-based Electro-responsive Smart Suspensions," Chemical Papers, 75(10), 5009-5034(2021).
  4. Deinega, Y. F. and Vinogradov, G. V., "Electric Fields in Rheology of Disperse System," Rheol Acta., 23, 636-651(1984).
  5. Shulman, Z. P., Gorodkin, R. G. and Korobko, E. V., "The Electrorheological Effects and Its Possible Uses," J. Non-Newt. Fluid Mech., 8, 29-41(1981).
  6. Xue, Bing., Zhao, X. and Yin, J., "Electrorheological Effect of Self-crosslinked Polymerized Ionic Liquids Containing Different Types of ion Spacers," Polymer, 288, 126455(2023).
  7. Han, Y. M., "2-DOF Force-reflecting Control of ER Haptic Interface Featuring a Spherical Joint," Trans. Korean Soc. Noise Vib. En'g., 33(6), 691-698(2023).
  8. Block, H. and Kelly, J. P., "Electro-rheology," J. Phys. D: Appl. Phys., 21, 1661-1677(1988).
  9. Kim, Y. D. and Yoon, D. J., "Electrorheological Fluids of Polypyrrole-tin Oxide Nanocomposite Particles," Korea-Australia Rheol. J., 28(4), 275-279(2016).
  10. Filisko, F. E. and Razdilowski, L. H., "An intrinsic Mechanism for the Activity of Aumino-silicate Based Electrorheological Materials," J. Rheo., 34, 539-552(1990).
  11. Otsubo, Y., Sakine, M. and Katayama, S., "Effect of Adsorbed Water on the Electrorheology of Silica Suspensions," J. Coll. Interface Sci., 150, 324-330(1992).
  12. Kim, Y. D. and Klingenberg, D. J., "Two roles of Nonionic Surfactants on the Electrorheological Response," J. Coll. Interface Sci., 168, 568-578(1996).
  13. Dong, Y. Z., Kwon, S. H., Choi, H. J., Puthiaraj, P., and Ahn, W., "Electroresponsive Polymer-Inorganic Semiconducting Composite (MCTP-Fe3O4) Particles and their Electrorheology," ACS Omega, 3, 17246-17253(2018).
  14. Noh, J., Yoon, C. M. and Jang, J., "Enhanced Electrorheological Activity of Polyaniline Coated Mesoporous Silica with High Aspect Ratio," J. Coll. Interface Sci., 470, 237-244(2016).
  15. Lengalova, A., Pavlinek, B., Saha, P., Stejskal, J. and Quadrat, O., "Electrorheology of Polyaniline-coated Inorganic Particles in Silicone Oil," J. Coll. Interface Sci., 258, 174-178(2003).
  16. Kim, Y. D. and Kim, J. H., "Synthesis of Polypyrrole-polycaprolactone Composites by Emusion Polymerization and the Electrorheological Behavior of their Suspensions," Colloid Polym. Sci., 286, 631-637(2008).
  17. Kim, Y. D. and Kim, J. H., "Synthesis of Polypyrrole-SBS Composites and the Particle Size Effect on the Electroheological Properties of Their Suspensions," Synthetic Metals, 158, 479-483 (2008).
  18. Stangroom, J. E., "Basic Considerations in Flowing Electrorheologcal Fluids," J. Stat. Phys., 64, 1059-1072(1991).
  19. Kim, Y. D., "A Surfactant Bridge Model for the Nonlinear Electrorheological Effects of Surfactant Activated ER Suspensions," J. Coll. Interface Sci., 236, 225-232(2001).
  20. Klass, D. L. and Martinek, T. W., "Electro-viscous Fluids," J. Appl. Phys. 38, 67-75(1967).
  21. Klingenberg, D. J., Swol, F. and Zukoski, C. F., "Small Shear Rate Response of Electrorheological Suspensions I," J. Chem. Phys., 94, 6160-6169(1991).
  22. Davis, L. C. and Ginder, J. M., "Electrostatic Forces in Electrorheological Fluids," Progress in Electrorheology, ed. by K.O. Havelka and F.E. Filisko, New York, Plenum, 107-111(1995).
  23. Foulc, J. N., Atten, P. and Felici, N., "Macroscopic Model of Interaction between Particles in an Electrotheological Fluid," J. Electrostatics, 33, 103-112(1994).
  24. Parthasarathy, M. and Klingenberg, D. J., "Electrorheology: Mechanisms and Models," Mater. Sci. Eng., R17, 57-103(1996).
  25. Kim, Y. D., "Simulation of Bi-dispersed Electrorheological Fluids of Different Particle Sizes y the Extended Maxwell-Wagner Polarization Model," Korean Chem. Eng. Res., 60, 613-619(2022).
  26. Kim, Y. D., "Simulation of Electrorheological Fluids by the Extended Maxwell-Wagner Polarization Model with Onsager theory," Korean Chem. Eng. Res., 58, 480-485(2020).
  27. Wang, Z., Xuan, S., Jiang, W., and Gong, X., "The Normal Stress of an Electrorheological fluid in Compression Mode," RSC Advances, 7, 25855-25869(2017).
  28. Marshall, L. and Zukoski, C. F., "Effects of Electric Fields on the Rheology of Non-aqueous Concentrated Suspensions," J. Chem. Soc., 85, 2785-2795(1989).
  29. Kim, Y. D., Choi, G. J., Sim, S. J. and Cho, Y. S., "Electrorheological Suspensions of Two Polarizable Particles," Korean J. Chem. Eng., 16, 338-342(1999).
  30. Onsagar, L., "Deviation from Ohm's Law in Weak Electrolytes," J. Chem. Phys., 2, 599-615(1934).