DOI QR코드

DOI QR Code

Electrochemical Characteristics of 2-Dimensional Titanium Carbide(MXene)/Silicon Anode Composite Prepared by Electrostatic Self-assembly

정전기적 자가결합법으로 제조된 2차원 티타늄 카바이드(MXene)/실리콘 음극 복합소재의 전기화학적 특성

  • Dong Min Kim (Department of Chemical Engineering, Chungbuk National University) ;
  • Jong Dae Lee (Department of Chemical Engineering, Chungbuk National University)
  • 김동민 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • Received : 2024.06.24
  • Accepted : 2024.07.05
  • Published : 2024.08.01

Abstract

In this study, the MXene/Si composite was prepared by electrostacic assembly with 2-dimensional structured titanium carbide (MXene) and nano silicon for anode material of high-performance lithium-ion battery. Ti3C2Tx MXene was synthesized by etching the Ti3AlC2 MAX with LiF/HCl, and the surface of nano silicon was charged to positively using CTAB (Cetyltrimethylammonium bromide). The MXene/Si anode composite was successfully manufactured by simple mixing process of synthesized MXene and charged silicon. The physical and electrochemical properties of prepared composite were investigated with MXene-silicon composition ratio, and the surface of electrode after cycles was analyzed to evaluate stability of the electrode. The MXene/Si composites demonstrated high initial discharge capacities of 1962.9, 2395.2 and 2504.3 mAh/g as the silicon composition ratio increased to 2, 3 and 4 compared to MXene, respectively. MXene/Si-4, which is MXene and silicon ratio with 1 : 4, exhibited 1387.5 mAh/g of reversible capacity, 74.5% of capacity retention at 100 cycles and high capacity of 700.5 mAh/g at high rate of 4.0 C. As the results, the MXene/Si composite prepared by electrostatic-assenbly could be applied to anode materials for high-performance LIBs.

본 연구에서는 고성능 리튬이온전지용 음극 소재로써 2차원 구조의 티타늄 카바이드(MXene)와 나노 실리콘의 정전기적 결합을 통한 MXene/Si 음극 복합소재를 제조하였다. LiF/HCl을 이용하여 Ti3AlC2 MAX를 에칭해 Ti3C2Tx MXene을 제조하였으며, 정전기적 결합을 형성하기 위해 나노 실리콘의 표면을 CTAB (Cetyltrimethylammonium bromide)을 활용하여 양전하로 대전하였다. MXene/Si 음극 복합소재는 제조된 MXene과 대전 된 실리콘의 간단한 혼합 공정을 통해 성공적으로 제조되었다. 제조된 복합소재의 물리적 특성과 전기화학적 특성을 MXene과 실리콘의 조성비에 따라 조사하였으며, 전극의 안정성을 평가하기 위해 충·방전 사이클 후의 전극 표면을 분석하였다. MXene/Si 복합소재는 MXene 대비 실리콘 조성 비율이 2, 3 및 4로 증가할수록 1962.9, 2395.2 및 2504.3 mAh/g의 높은 초기 방전용량을 나타내었다. MXene과 실리콘 조성비가 1 : 4인 MXene/Si-4는 100 사이클에서 1387.5 mAh/g의 가역 용량과 74.5%의 용량 유지율을 나타내었으며, 4.0 C의 높은 율속에서도 700.5 mAh/g으로 높은 용량을 발현하였다. 이러한 결과를 통해 정전기적 결합으로 제조된 MXene/Si 복합소재는 고성능 리튬이온배터리용 음극소재로 적용 될 수 있다.

Keywords

Acknowledgement

본 연구는 2022년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임[RS-2022-00140827].

References

  1. Chen, B., Chen, L., Zu, L., Feng, Y., Su, Q., Zhang, C. and Yang, J., "Zero-strain High Capacity Silicon/carbon Anode Enabled by a MOF-derived Space-confined Single-atom Catalytic Strategy for Lithiun-ion Batteries," Adv. Mater., 34(21), 2200894(2022). 
  2. Qiao, Y., Hu, Y., Liu, W., Zhang, H., Shang, H., Qu, M., Peng, G. and Xie, Z., "Synergistic Carbon Coating of MOF-derived Porous Carbon and CNTs on Silicon for High Performance Lithium-ion Batteries," J. Electroanal. Chem., 888, 115014(2021). 
  3. Feng, K., Li, M., Liu, W., Kashkooli, A., Xiao, X., Cai, M. and Chen, Z., "Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications," Small, 14(8), 1702737 (2018). 
  4. Bitew, Z., Tesemma, M., Beyene, Y. and Amare, M., "Nano-structured Silicon and Silicon Based Composites as Anode Materials for Lithium Ion Batteries: Recent Progress and Perspectives," Sustainable Energy and Fuels, 6(4), 1014-1050(2022). 
  5. Luo, W., Chen, X., Xia, Y., Chen, M., Wang, L., Wang, Q., Li, W. and Yang, J., "Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries," Adv. Energy Mater., 7(24), 1701083(2017). 
  6. Zhang, T., Pan, L., Tang, H., Du, F., Guo, Y., Qiu, T. and Yang, J., "Synthesis of Two-dimensional Ti3C2Tx MXene Using HCl+LiF Etchant: Enhanced Exfoliation and Delamination," J. Alloys and Compd., 695, 818-826(2017). 
  7. Li, X., Wang, C., Cao, Y. and Wang, G., "Functional MXene Materials: Progress of Their Applications," Chemistry-An Asian Journal, 13(19), 2742-2757(2018). 
  8. Tian, Y., An, Y. and Feng, J., "Flexible and Freestanding Silicon/MXene Composite Papers for High-Performance Lithium-Ion Batteries," ACS. Appl. Mater. Inter., 11(10), 10004-10011(2019). 
  9. Yan, Y., Zhao, X., Dou, H., Wei, J., Sun, Z., He, Y., Dong, Q., Xu, H. and Yang, X., "MXene Frameworks Promote the Growth and Stability of LiF-Rich Solid-Electrolyte Interphases on Silicon Nanoparticle Bundles," ACS Appl. Mater. Inter., 12(16), 18541-18550(2020). 
  10. Zhang, Y., Mu, Z., Lai, J., Chao, Y., Yang, Y., Zhou, P., Li, Y., Yang, W., Xia, Z. and Guo, S., "MXene/Si@SiOx@C Layer-by-layer Superstructure with Autoadjustable Function for Superior Stable Lithium Storage," ACS Nano, 13(2), 2167-2175(2019). 
  11. Zhang, F., Jia, Z., Wang, C., Feng, A., Wang, K., Hou, T., Liu, J., Zhang, Y. and Wu, G., "Sandwich-like Silicon/Ti3C2Tx MXene Composite by Electrostatic Self-assembly for High Performance Lithium Ion Battery," Energy, 195, 117047(2020). 
  12. Kim, Y., Kim, S., Seo, D., Chae, Y., Anayee, M., Lee, Y., Gogotsi, Y., Ahn, C. and Jung, H., "Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis," Chem. Mater., 33(16), 6346-6355(2021). 
  13. Naslund, L., Persson, P. and Rosen, J., "X-ray Photoelectron Spectroscopy of Ti3AlC2, Ti3C2Tz and TiC Provides Evidence for the Electrostatic Interaction Between Laminated Layers in Max-phase Materials," J. Phys. Chem. C, 124(50), 27732-27742(2020). 
  14. Zhou, H., Zhang, J., Liu, J., Feng, S., Li, C., Marsili, E. and Zhang, X., "Silicon Nanospheres Supported on Conductive MXene Nanosheets as Anodes for Lithium-Ion Batteries," ACS Appl. Energy Mater., 6(1), 160-169(2023). 
  15. Cui, Y., Wang, J., Wang, X., Qin, J. and Cao, M., "A Hybrid Assembly of MXene with NH2-Si Nanoparticles Boosting Lithium Storage Performance," Chem.-Asian J., 15(8), 1376-1383(2020). 
  16. Naguib, M., Come, J., Dyatkin, B., Presser, V., Taberna, P., Simon, P., Barsoum, M. and Gogotsi, Y., "MXene: A Promising Transition Metal Carbide Anode for Lithium-ion Batteries," Electrochem. Commun., 16(1), 61-64(2012). 
  17. Choi, N., Kim, E., Yeom, H. and Lee, J., "Effect of Binder and Electrolyte on Electrochemical Performance of Si/CNT/C Anode Composite in Lithium-ion Battery," Korean Chem. Eng. Res., 60(30), 1-7(2022). 
  18. An, Y., Tian, Y., Zhang, Y., Wei, C., Tan, L., Zhang, C., Cui, N., Xiong, S., Feng, J. and Qian, Y., "Two-Dimensional Silicon/Carbon from Commercial Alloy and CO2 for Lithium Storage and Flexible Ti3C2Tx MXene-Based Lithium-Metal Batteries," ACS Nano, 14(12), 17574-17588(2020). 
  19. Ding, N., Xum, J., Yao, Y., Wegner, G., Lieberwirth, O. and Chen, C., "Improvement of Cyclability of Si as Anode for Li-ion Batteries," J. Power Sources, 192(2), 644-651(2009). 
  20. Nangir, M., Massoudi, A. and Tayebifard, S., "Investigation of the Lithium-ion Depletion in the Silicon-silicon Carbide Anode/electrolyte Interface in Lithium-ion Battery via Electrochemical Impedance Spectroscopy," J. Electroanal. Chem., 873, 114385(2020). 
  21. Paloukis, F., Elmasides, C., Farmakis, F., Selinis, P., Neophytides, S. and Georgoulas, N., "Electrochemical Impedance Spectroscopy Study in Micro-grain Structured Amorphous Silicon Anodes for Lithium-ion Batteries," J. Power Sources, 331, 285-292(2016). 
  22. Yang, H., Jiang, T. and Zhou, Y., "Enhanced Lithium Storage Performance in Si/MXene Porous Composites," Inorganics, 11(7), 279(2023).