Acknowledgement
The authors sincerely thank the Editor and Reviewers for their constructive comments on the earlier version of the manuscript.
References
- Ahmed, A., Mohammed, A.M.Y. and Maekawa, K. (2021), "Correlation of high cycle fatigue behavior of circular and square reinforced concrete columns subjected to shear controlled cyclic loading", KSCE J. Civ. Eng., 25(5), 1755-1764. https://doi.org/10.1007/s12205-021-0850-y.
- Al-Bayati, A.F. (2023), "Shear strength of circular and rectangular reinforced concrete columns", KSCE J. Civ. Eng., 2(2013). https://doi.org/10.1007/s12205-023-0027-y.
- American Concrete Institute (2014), Building Code Requirements for Structural Concrete (ACI 318-14), In American Concrete Institute. Farmington Hills, MI, USA.
- Asteris, P.G., Lemonis, M.E., Nguyen, T.A., Van Le, H. and Pham, B.T. (2021), "Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes", Steel Compos. Struct., 39(4), 471-491. https://doi.org/10.12989/scs.2021.39.4.471.
- Aval, S.B.B., Ketabdari, H. and Gharebaghi, S.A. (2017), "Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming", Structures, 12, 13-23. https://doi.org/10.1016/j.istruc.2017.07.002
- Azadi Kakavand, M.R., Sezen, H. and Taciroglu, E. (2021), "Datadriven models for predicting the shear strength of rectangular and circular reinforced concrete columns", J. Struct. Eng., 147(1), 1-12. https://doi.org/10.1061/(asce)st.1943-541x.0002875.
- Bardhan, A., Biswas, R., Kardani, N., Iqbal, M., Samui, P., Singh, M.P. and Asteris, P.G. (2022), "A novel integrated approach of augmented grey wolf optimizer and ANN for estimating axial load carrying-capacity of concrete-filled steel tube columns", Constr. Build. Mater., 337(February), 127454. https://doi.org/10.1016/j.conbuildmat.2022.127454.
- Bentejac, C., Csorgo, A. and Martinez-Munoz, G. (2021), "A comparative analysis of gradient boosting algorithms", Artificial Intell. Rev., 54. https://doi.org/10.1007/s10462-020-09896-5.
- Biskinis, D.E., Roupakias, G.K. and Fardis, M.N. (2004), "Degradation of shear strength of reinforced concrete members with inelastic cyclic displacements", Struct. J., 101(6), 773-783.
- Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
- Caglar, N. (2009), "Neural network based approach for determining the shear strength of circular reinforced concrete columns", Constr. Build. Mater., 23(10), 3225-3232. https://doi.org/10.1016/j.conbuildmat.2009.06.002
- Canadian Standards Association (1995), A23. 3-94, Design of Concrete Structures, In Canadian Standard Association. Rexdale, Ontario.
- Cassese, P., De Risi, M.T. and Verderame, G.M. (2019), "A modelling approach for existing shear-critical RC bridge piers with hollow rectangular cross section under lateral loads", Bull. Earthq. Eng., 17, 237-270. https://doi.org/10.1007/s10518-018-0429-2
- Chen, T. and Guestrin, C. (2016), "XGBoost: A scalable tree boosting system", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785.
- Cortes, C. and Vapnik, V., (1995), Support-vector networks, Mach. Learn., 20(3), 273-297. https://doi.org/10.1007/BF00994018.
- Cristianini, N. and Ricci, E. (2008), Support Vector Machines, Encyclopedia of Algorithms, 928-932. https://doi.org/10.1007/978-0-387-30162-4_415.
- Dorogush, A.V., Ershov, V. and Gulin, A. (2018), CatBoost: Gradient Boosting with Categorical Features Support, 1-7. Retrieved from http://arxiv.org/abs/1810.11363.
- EC8 (2004), Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, In European Committee for Standardization. Brussels, Belgium.
- Feng, D.-C., Liu, Z.-T., Wang, X.-D., Jiang, Z.-M. and Liang, S.- X., (2020), "Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm", Adv. Eng. Inform., 45, 101126.
- Fiore, A., Marano, G. C., Laucelli, D., and Monaco, P., (2014), Evolutionary modeling to evaluate the shear behavior of circular reinforced concrete columns, Adv. Civ. Eng., 2014.
- Freund, Y. and Mason, L., (1999), The alternating decision tree learning algorithm, Icml, 99, 124-133.
- Friedman, J.H. (2001), Greedy function approximation: A gradient boosting machine, Ann. Stat., 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451.
- Garcia, F.J.M. (2012), Design of Concrete Structures.
- Ghannoum, W., B, Sivaramakrishnan, S., Pujol, A.C.C., S., Yoosuf, N. and Wang, Y. (2012b), "ACI 369 rectangular column database", In Network for Earthquake Engineering Simulation. Berkeley, CA.
- Ghannoum, W., B. Sivaramakrishnan, S., Pujol, A.C.C., Fernando, S., Yoosuf, N. and Wang, Y. (2012a), "ACI 369 circular column database", In Network for Earthquake Engineering Simulation. Berkeley, CA.
- Ghannoum, W.M. and Moehle, J.P. (2012), "Rotation-based shear failure model for lightly confined RC columns", J. Struct. Eng., 138(10), 1267-1278. https://doi.org/10.1061/(asce)st.1943-541x.0000555.
- Ghee, A.B., Priestley, M.J.N. and Paulay, T. (1989), "Seismic shear strength of circular reinforced concrete columns", ACI Struct. J., 86(1). https://doi.org/10.14359/2634.
- Haido, J.H. (2022), "Prediction of the shear strength of RC beamcolumn joints using new ANN formulations", Structures, 38(February), 1191-1209. https://doi.org/10.1016/j.istruc.2022.02.046.
- Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M. and Chen, H. (2019), "Harris hawks optimization: Algorithm and applications", Futur. Gener. Comput. Syst., 97, 849-872. https://doi.org/10.1016/j.future.2019.02.028.
- Hoang, V.N., Nguyen, N.L., Tran, Q.D., Vu, Q.V. and Nguyen, X.H. (2022), "Data-driven geometry-based topology optimization", Struct. Multidiscipl. Optim., 65(2). https://doi.org/10.1007/s00158-022-03170-8
- Hung, C.C., Hsiao, H.J., Shao, Y. and Yen, C.H. (2023), "A comparative study on the seismic performance of RC beamcolumn joints retrofitted by ECC, FRP, and concrete jacketing methods", J. Build. Eng., 64(November 2022), 105691. https://doi.org/10.1016/j.jobe.2022.105691.
- Kaveh, A., Talatahari, S. and Khodadadi, N., (2020), "Stochastic paint optimizer: theory and application in civil engineering", Eng. Comput., https://doi.org/10.1007/s00366-020-01179-5.
- Ketabdari, H., Karimi, F. and Rasouli, M., (2020), Shear strength prediction of short circular reinforced-concrete columns using soft computing methods", Adv. Struct. Eng., 23(14), 3048-3061. https://doi.org/10.1177/1369433220927270
- Kim, S.-E., Vu, Q.-V., Papazafeiropoulos, G., Kong, Z. and Truong, V.-H. (2020), "Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames. Steel Compos. Struct., 37(2), 193-209. https://doi.org/10.12989/SCS.2020.37.2.193.
- Kong, Z., Le, D.N., Pham, T.H., Keerthan, P., George, P. and Vu, Q.V. (2024), "Hybrid machine learning with optimization algorithm and resampling methods for patch load resistance prediction of unstiffened and stiffened plate girders", Expert Syst. Appl., 249(C), 123806. https://doi.org/10.1016/j.eswa.2024.123806.
- Le, D.N., Pham, T.H., George, P., Kong, Z., Tran, V.L. and Vu, Q.V. (2024), "Hybrid machine learning with Bayesian optimization methods for prediction of patch load resistance of unstiffened plate girders", Prob. Eng. Mech., 76, 103624. https://doi.org/10.1016/j.probengmech.2024.103624.
- Le, T.-T., Asteris, P.G. and Lemonis, M.E. (2022), "Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques", Eng. Comput., 38(4), 3283-3316. https://doi.org/10.1007/s00366-021-01461-0.
- Liu, X., Luo, Y., Lu, Y., Jin, Y., Vu, Q.V. and Kong, Z. (2023), "A dual attention network for automatic metallic corrosion detection in natural environment", J. Build. Eng., 75, 107014. https://doi.org/10.1016/j.jobe.2023.107014.
- Lundberg, S.M. and Lee, S.-I. (2017), "A unified approach to interpreting model predictions", Adv. Neural Inf. Process. Syst., 30, 4766-4775.
- Ma, C., Wang, S., Zhao, J., Xiao, X., Xie, C. and Feng, X. (2023), "Prediction of shear strength of RC deep beams based on interpretable machine learning", Constr. Build. Mater., 387(April), 131640. https://doi.org/10.1016/j.conbuildmat.2023.131640.
- Moehle, J., Elwood, K. and Sezen, H., (2001), "Gravity load collapse of Building Frames during Earthquakes, ACI Spec. Publ., 197, 215-238.
- Molnar, C. (2021), Interpretable Machine Learning. https://doi.org/10.1201/9780367816377-16.
- Nakamura, T. and Yoshimura, M. (2002), "Gravity load collapse of reinforced concrete columns with brittle failure modes, J. Asian Archit. Build. Eng., 1(1), 21-27. https://doi.org/10.3130/jaabe.1.21.
- Naser, M.Z. and Alavi, A. (2020), "Insights into performance fitness and error metrics for machine learning", ArXiv,abs/2006.0.
- Naser, M.Z., Kodur, V., Thai, H.T., Hawileh, R., Abdalla, J. and Degtyarev, V.V. (2021), "StructuresNet and FireNet: Benchmarking databases and machine learning algorithms in structural and fire engineering domains, J. Build. Eng., 44(July), 102977. https://doi.org/10.1016/j.jobe.2021.102977.
- Nick, H., Ashrafpoor, A. and Aziminejad, A. (2023), "Damage identification in steel frames using dual-criteria vibration-based damage detection method and artificial neural network", Structures, 51, 1833-1851. https://doi.org/https://doi.org/10.1016/j.istruc.2023.03.152.
- O'brien, R.M. (2007), "A caution regarding rules of thumb for variance inflation factors", Qual. & Quant., 41, 673-690. https://doi.org/10.1007/s11135-006-9018-6
- Pan, Y. and Zhang, L. (2021), Roles of artificial intelligence in construction engineering and management: A critical review and future trends", Autom. Constr., 122(October 2020), 103517. https://doi.org/10.1016/j.autcon.2020.103517.
- Pan, Z. and Li, B. (2013), "Truss-arch model for shear strength of shear-critical Reinforced Concrete Columns, J. Struct. Eng., 139(4), 548-560. https://doi.org/10.1061/(asce)st.1943-541x.0000677.
- Pham, V.-T., Thai, D.-K. and Kim, S.-E. (2024), "A novel procedure for cable damage identification of cable-stayed bridge using particle swarm optimization and machine learning", Struct. Heal. Monit., https://doi.org/10.1177/14759217241246501.
- Pham, V.T. and Kim, S.E. (2023), "A robust approach in prediction of RCFST columns using machine learning algorithm", Steel Compos. Struct., 46(2), 153-173. https://doi.org/10.12989/scs.2023.46.2.153.
- Pham, V.T., Jang, Y., Park, J.W., Kim, D.J. and Kim, S.E. (2022), "Cable damage identification of cable - stayed bridge using multi - layer perceptron and graph neural network", Steel Compos. Struct., 44(2), 241-254. https://doi.org/10.12989/scs.2022.44.2.241.
- Pham, V.T., Son, H.S., Kim, C.H., Jang, Y. and Kim, S.E. (2023), "A novel method for vehicle load detection in cable - stayed bridge using graph neural network", Steel Compos. Struct., 46(6), 731-744. https://doi.org/10.12989/scs.2023.46.6.731.
- Phan, V.T., Tran, V.L., Nguyen, V.Q. and Nguyen, D.D. (2022), "Machine learning models for predicting Shear Strength and Identifying Failure Modes of Rectangular RC Columns", Buildings, 12(10). https://doi.org/10.3390/buildings12101493.
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V. and Gulin, A. (2018), "Catboost: Unbiased boosting with categorical features", Adv. Neural Inf. Process. Syst., 2018-Decem(Section 4), 6638-6648.
- Raja, M.N., Abbas Jaffar, S.T., Bardhan, A. and Shukla, S.K. (2023), "Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling", J. Rock Mech. Geotech. Eng., 15(3), 773-788. https://doi.org/10.1016/j.jrmge.2022.04.012.
- Raja, M.N.A. and Shukla, S.K. (2021), "Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique", Geotext. Geomembranes, 49(5), 1280-1293. https://doi.org/10.1016/j.geotexmem.2021.04.007.
- Raja, M.N.A., Abdoun, T. and El-Sekelly, W. (2023), "Smart prediction of liquefaction-induced lateral spreading", J. Rock Mech. Geotech. Eng. https://doi.org/10.1016/j.jrmge.2023.05.017.
- Rajasekaran, S., Suresh, D. and Vijayalakshmi Pai, G.A. (2002), "Application of sequential learning neural networks to civil engineering modeling problems, Eng. Comput., 18(2), 138-147. https://doi.org/10.1007/s003660200012.
- Refaeilzadeh, P., Tang, L. and Liu, H. (2009), "Cross-validation", Encyclopedia Database Syst., 532-538. https://doi.org/10.1007/978-0-387-39940-9_565.
- Reich, Y., (1997), Machine learning techniques for civil engineering problems, Comput. Civ Infrastruct Eng, 12(4), 295-310. https://doi.org/10.1111/0885-9507.00065
- Saatcioglu, M. and Baingo, D., (1999), "Circular high-strength concrete columns under simulated seismic loading", J. Struct. Eng., 125(3), 272-280. https://doi.org/10.1061/(asce)0733-9445(1999)125:3(272).
- Said, A. and Gordon, N. (2019), "Predicting shear strength of RC columns using artificial neural networks", J. Build. Mater. Struct., 6(2), 64-76. https://doi.org/10.34118/jbms.v6i2.69
- Sandeep, M.S., Tiprak, K., Kaewunruen, S., Pheinsusom, P. and Pansuk, W. (2023), "Shear strength prediction of reinforced concrete beams using machine learning", Structures, 47, 1196-1211. https://doi.org/https://doi.org/10.1016/j.istruc.2022.11.140.
- Sezen, H. and Moehle, J.P. (2004), "Shear strength model for lightly reinforced concrete columns", J. Struct. Eng., (November 2004), 1692-1703. https://doi.org/10.1061/(ASCE)0733-9445(2004)130.
- Smola, A. and Scholkopf, B. (2004), "A tutorial on support vector regression", Stat. Comput., 14, 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
- Son, H., Pham, V.-T., Jang, Y. and Kim, S.-E. (2021), "Damage localization and severity assessment of a cable-stayed bridge using a message passing neural network", Sensors, 21(9). https://doi.org/10.3390/s21093118.
- Sun, H., Burton, H.V. and Huang, H. (2021), "Machine learning applications for building structural design and performance assessment: State-of-the-art review", J. Build. Eng., 33(March 2020), 101816. https://doi.org/10.1016/j.jobe.2020.101816.
- Tran, C.T.N. and Li, B. (2014), "Shear strength model for reinforced concrete columns with low transverse reinforcement ratios", Adv. Struct. Eng., 17(10), 1373-1385. https://doi.org/10.1260/1369-4332.17.10.1373
- Tran, V.L. and Kim, S.E. (2020), "Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns", Thin-Wall. Struct., 152(November 2019), 106744. https://doi.org/10.1016/j.tws.2020.106744.
- Tran, V.L., Lee, T.H., Nguyen, D.D., Nguyen, T.H., Vu, Q.V. and Phan, H.T. (2023), "Failure mode identification and shear strength prediction of rectangular hollow RC columns using novel hybrid machine learning models", Bldg., 13(12), 2914. https://doi.org/10.3390/buildings13122914.
- Truong, V.H., George, P., Vu, Q.V., Pham, V.T. and Kong, Z. (2021), "Predicting the patch load resistance of stiffened plate girders using machine learning algorithms", Ocean Eng., 240, 109886. https://doi.org/10.1016/j.oceaneng.2021.109886.
- Truong, V.H., Vu, Q.V., Thai, H.T. and Ha, M.H. (2020), "A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm", Adv. Eng. Softw., 147, 102825. https://doi.org/10.1016/j.advengsoft.2020.102825.
- Vu, Q.V., Le, D.N., Pham, T.H., Wei, G. and Tangaramvong, S. (2024), "Hybrid machine learning with moth-flame optimization methods for strength prediction of CFDST columns under compression", Steel Compos. Struct., 51(6), 679-695. https://doi.org/10.12989/scs.2024.51.6.679.
- Vu, Q.V., Tangaramvong, S., Van, T.H. and Papazafeiropoulos, G. (2023), "Hybrid GA-ANN and PSO-ANN methods for accurate prediction of uniaxial compression capacity of CFDST columns", Steel Compos. Struct., 47(6), 759-779. https://doi.org/10.12989/scs.2023.47.6.759.
- Vu, Q.V., Truong, V.H. and Thai, H.T. (2021), "Machine learningbased prediction of CFST columns using gradient tree boosting algorithm", Compos. Struct., 259(July 2020), 113505. https://doi.org/10.1016/j.compstruct.2020.113505.
- Wakjira, T.G., Al-Hamrani, A., Ebead, U. and Alnahhal, W. (2022), "Shear capacity prediction of FRP-RC beams using single and ensenble ExPlainable Machine learning models", Compos. Struct., 287, 115381. https://doi.org/10.1016/j.compstruct.2022.115381.
- Wang, J., Zhou, W., Ren, X., Su, M. and Liu, J. (2023), "A waveform-based clustering and machine learning method for damage mode identification in CFRP laminates", Compos. Struct., 312(March), 116875. https://doi.org/10.1016/j.compstruct.2023.116875.
- Wang, X., Zhang, X. and Shahzad, M.M. (2021), "A novel structural damage identification scheme based on deep learning framework", Structures, 29, 1537-1549. https://doi.org/https://doi.org/10.1016/j.istruc.2020.12.036.
- Yi, W.J., Zhou, Y., Hwang, H.J., Cheng, Z.J. and Hu, X. (2018), "Cyclic loading test for circular reinforced concrete columns subjected to near-fault ground motion", Soil Dyn. Earthq. Eng., 112(April), 8-17. https://doi.org/10.1016/j.soildyn.2018.04.026.
- Yu, B., Liu, S. and Li, B. (2019), "Probabilistic calibration for shear strength models of reinforced concrete columns", J. Struct. Eng., 145(5), 4019026.
- Zhang, Z., Zhang, Z., Di Caprio, F. and Gu, G.X. (2022), "Machine learning for accelerating the design process of double-double composite structures", Compos. Struct., 285(June 2021), 115233. https://doi.org/10.1016/j.compstruct.2022.115233.