DOI QR코드

DOI QR Code

Optimum design of steel frames against progressive collapse by guided simulated annealing algorithm

  • Bilal Tayfur (Department of Civil Engineering, Bayburt University) ;
  • Ayse T. Daloglu (Department of Civil Engineering, Karadeniz Technical University)
  • Received : 2022.05.25
  • Accepted : 2024.02.15
  • Published : 2024.03.10

Abstract

In this paper, a Guided Simulated Annealing (GSA) algorithm is presented to optimize 2D and 3D steel frames against Progressive Collapse. Considering the nature of structural optimization problems, a number of restrictions and improvements have been applied to the decision mechanisms of the algorithm without harming the randomness. With these improvements, the algorithm aims to focus relatively on the flawed variables of the analyzed frame. Besides that, it is intended to be more rational by instituting structural constraints on the sections to be selected as variables. In addition to the LRFD restrictions, the alternate path method with nonlinear dynamic procedure is used to assess the risk of progressive collapse, as specified in the US Department of Defense United Facilities Criteria (UFC) Design of Buildings to Resist Progressive Collapse. The entire optimization procedure was carried out on a C# software that supports parallel processing developed by the authors, and the frames were analyzed in SAP2000 using OAPI. Time history analyses of the removal scenarios are distributed to the processor cores in order to reduce computational time. The GSA produced 3% lighter structure weights than the SA (Simulated Annealing) and 4% lighter structure weights than the GA (Genetic Algorithm) for the 2D steel frame. For the 3D model, the GSA obtained 3% lighter results than the SA. Furthermore, it is clear that the UFC and LRFD requirements differ when the acceptance criteria are examined. It has been observed that the moment capacity of the entire frame is critical when designing according to UFC.

Keywords

References

  1. Adam, J.M., Parisi, F., Sagaseta, J. and Lu, X. (2018), "Research and practice on progressive collapse and robustness of building structures in the 21st century", Eng. Struct., 173(3), 122-149. https://doi.org/10.1016/j.engstruct.2018.06.082.
  2. Alberdi, R. and Khandelwal, K. (2015), "Comparison of robustness of metaheuristic algorithms for steel frame optimization", Eng. Struct., 102, 40-60. https://doi.org/10.1016/j.engstruct.2015.08.012.
  3. American Society of Civil Engineers (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures : ASCE/SEI 7-16.
  4. Artar, M. and Daloglu, A. T. (2015), "Optimum design of steel space frames with composite beams using genetic algorithm", Steel Compos. Struct., 19(2), 503-519. https://doi.org/10.12989/scs.2015.19.2.503.
  5. Bennage, W.A. and Dhingra, A.K. (1995), "Single and multiobjective structural optimization in discrete-continuous variables using simulated annealing", Int. J. Numer. Methods Eng., 38(16), 2753-2773. https://doi.org/10.1002/nme.1620381606.
  6. Benvidi, A., Mohammadi Dehcheshmeh, E., Safari, P., Broujerdian, V. and Huang, S.S. (2023), "Post-fire seismic performance of low-yielding-steel plate shear wall systems", Int. J. Civ. Eng., 21(10), 1661-1678. https://doi.org/10.1007/s40999-023-00856-y.
  7. Byfield, M., Mudalige, W., Morison, C. and Stoddart, E. (2014), "A review of progressive collapse research and regulations", Proc. Inst. Civ. Eng. Struct. Build., 167(8), 447-456. https://doi.org/10.1680/stbu.12.00023.
  8. Cassiano, D., D'Aniello, M., Rebelo, C., Landolfo, R. and da Silva, L.S. (2016), "Influence of seismic design rules on the robustness of steel moment resisting frames", Steel Compos. Struct., 21(3), 479-500. https://doi.org/10.12989/scs.2016.21.3.479.
  9. Chen, C.H., Zhu, Y.F., Yao, Y. and Huang, Y. (2016), "Progressive collapse analysis of steel frame structure based on the energy principle", Steel Compos. Struct., 21(3), 553-571. https://doi.org/10.12989/scs.2016.21.3.553.
  10. Computers and Structures Inc. (2019), SAP2000 (19.1). Computers and Structures Inc.
  11. Degertekin, S.O. (2007), "A comparison of simulated annealing and genetic algorithm for optimum design of nonlinear steel space frames", Struct. Multidiscip. Optim., 34(4), 347-359. https://doi.org/10.1007/s00158-007-0096-4.
  12. Degertekin, S.O., Hayalioglu, M.S. and Ulker, M. (2008), "A hybrid tabu-simulated annealing heuristic algorithm for optimum design of steel frames", Steel Compos. Struct., 8(6), 475-490. https://doi.org/10.12989/scs.2008.8.6.475.
  13. Dehcheshmeh, E.M., Rashed, P., Broujerdian, V., Shakouri, A. and Aslani, F. (2023), "Predicting seismic collapse safety of post-fire steel moment frames", Buildings, 13(4). https://doi.org/10.3390/buildings13041091.
  14. Design of Buildings to Resist Progressive Collapse (2005).
  15. Do, B. and Ohsaki, M. (2021), "Gaussian mixture model for robust design optimization of planar steel frames", Struct. Multidiscip. Optim., 63(1), 137-160. https://doi.org/10.1007/s00158-020-02676-3.
  16. Erguclu, E. (2013), "A Recent Challange in Structural Steel Design: Progressive Collapse", METU.
  17. Esfandiari, M.J., Urgessa, G.S., Sheikholarefin, S. and Dehghan Manshadi, S.H. (2018), "Optimization of reinforced concrete frames subjected to historical time-history loadings using DMPSO algorithm", Struct. Multidiscip. Optim., 58(5), 2119-2134. https://doi.org/10.1007/s00158-018-2027-y.
  18. Gutierrez Soto, M. and Adeli, H. (2017), "Many-objective control optimization of high-rise building structures using replicator dynamics and neural dynamics model", Struct. Multidiscip. Optim., 56(6), 1521-1537. https://doi.org/10.1007/s00158-017-1835-9.
  19. Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2010), "Comparison of non-deterministic search techniques in the optimum design of real size steel frames", Comput. Struct., 88(17-18), 1033-1048. https://doi.org/10.1016/j.compstruc.2010.06.006.
  20. Kazemi-Moghaddam, A. and Sasani, M. (2015), "Progressive collapse evaluation of Murrah federal building following sudden loss of column G20", Eng. Struct., 89, 162-171. https://doi.org/10.1016/j.engstruct.2015.02.003.
  21. Kiakojouri, F., De Biagi, V., Chiaia, B. and Sheidaii, M.R. (2020), "Progressive collapse of framed building structures: Current knowledge and future prospects", Eng. Struct., 206(11), 110061. https://doi.org/10.1016/j.engstruct.2019.110061.
  22. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by Simulated Annealing", Science (80-. )., 220(4598), 671 LP - 680. https://doi.org/10.1126/science.220.4598.671.
  23. Liu, M. (2011), "Progressive collapse design of seismic steel frames using structural optimization", J. Constr. Steel Res., 67(3), 322-332. https://doi.org/10.1016/j.jcsr.2010.10.009.
  24. Mirkarimi, S.P., Mohammadi Dehcheshmeh, E. and Broujerdian, V. (2022), "Investigating the progressive collapse of steel frames considering vehicle impact dynamics", Iran. J. Sci. Technol. - Trans. Civ. Eng., 46(6), 4463-4479. https://doi.org/10.1007/s40996-022-00927-5.
  25. Mociran, H.A. and Popa, A.G. (2016), "Influence of 2D versus 3D modeling on the seismic performance of dual eccentrically braced steel frames", In Insifhts and Innovations in Structural Engineering, Mechanics and Computation, 338-341.
  26. Rezvani, F.H. and Asgarian, B. (2014), "Effect of seismic design level on safety against progressive collapse of concentrically braced frames", Steel Compos. Struct., 16(2), 135-156. https://doi.org/10.12989/scs.2014.16.2.135.
  27. Safari Honar, F., Broujerdian, V., Mohammadi Dehcheshmeh, E. and Bedon, C. (2023), "Nonlinear dynamic assessment of a steel frame structure subjected to truck collision", Buildings, 13(6). https://doi.org/10.3390/buildings13061545.
  28. Seismic Evaluation and Retrofit of Existing Buildings (2017).
  29. Siadati, S.R., Broujerdian, V. and Dehcheshmeh, E.M. (2022), "Evaluation of intermediate reinforced concrete moment frame subjected to truck collision", J. Rehabil. Civ. Eng., 10(3), 64-80. https://doi.org/10.22075/JRCE.2021.22745.1491.
  30. Specification for Structural Steel Buildings (2010).
  31. Starossek, U. (2007), "Typology of progressive collapse", Eng. Struct., 29(9), 2302-2307. https://doi.org/10.1016/j.engstruct.2006.11.025.
  32. Tayfur, B., Yilmaz, H. and Daloglu, A.T. (2020), "Hybrid tabu search algorithm for weight optimization of planar steel frames", Eng. Optim., 1-15. https://doi.org/10.1080/0305215X.2020.1793977.