과제정보
The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos: 52368021 and 52068047), the Lanzhou Youth Science and Technology Talent Innovation Project (Grant No: 2023-QN-40) and the Hong Liu Jie Qing Talent Support Program Project of Lanzhou University of Technology.
참고문헌
- Adam, J.M., Buitrago, M. and Bertolesi, E. (2020), "Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario", Eng. Struct., 210, 110414. https://doi.org/10.1016/j.engstruct.2020.110414.
- Adam, J.M., Parisi, F., Sagaseta, J. and Lu X.Z. (2018), "Research and practice on progressive collapse and robustness of building structures in the 21st century", Eng. Struct., 173, 122-149. https://doi.org/10.1016/j.engstruct.2018.06.082.
- Almusallam, T.H., Al-Salloum, Y, Ngo, T.D. and Mendis P. (2017), "Experimental investigation of progressive collapse potential of ordinary and special moment-resisting reinforced concrete frames", Mater Struct., 50(2), 1-16. https://doi.org/10.1617/s11527-017-1014-x.
- Almusallam, T.H., Elsanadedy, H.M., Al-Salloum, Y. and Siddiqui, N.A. (2018), "Experimental investigation on vulnerability of precast RC beam-column joints to progressive collapse", KSCE J Civ Eng., 22(10), 3995-4010. https://doi.org/10.1007/s12205-018-1518-0.
- Al-Salloum, Y., Alrubaidi, M.A., Elsanadedy, H.M. and Almusallam, T. (2018), "Strengthening of precast RC beam-column connections for progressive collapse mitigation using bolted steel plates", Eng. Struct., 161, 146-160. https://doi.org/10.1016/j.engstruct.2018.02.009.
- ASCE/SEI (2010), Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers, Washington DC, USA.
- Campione, G. (2021), "Effect of progressive collapse of central column on the push-down response of two-span beam-column substructures", Eng. Struct., 248, 113119. https://doi.org/10.1016/j.engstruct.2021.113119.
- CECS 392-2021(2021), Standard for Anti-Collapse Design of Building Structures. China Planning Press, Beijing, China.
- Chen, K. and Tan, K.H. (2020), "Structural behavior of composite moment-resisting joints under column-removal scenario", J. Struct. Eng., 146(3), 04019226. https://doi.org/10.1061/(ASCE)ST. 1943-541X. 0002518.
- Demonceau, J.F. and Jaspart, J.P. (2010), "Experimental test simulating a column loss in a composite frame", Adv Steel Constr, 6(3), 891-913. https://doi.org/10.1142/S0578563410002166.
- Diao, M.Z., Li, Y., Guan, H., Lu, X.Z. and Gilbert, B.P. (2020), "Influence of horizontal restraints on the behavior of vertical disproportionate collapse of RC moment frames", Eng Fail Anal., 109, 104324. https://doi.org/10.1016/j.engfailanal.2019.104324.
- DoD (Department of Defense) (2016), Design of Buildings to Resist Progressive Collapse. Unified facilities criteria (UFC). Washington DC, USA.
- Esmaeily, A. and Xiao, Y. (2005), "Behavior of reinforced concrete columns under variable axial loads: analysis", ACI Struct J., 102(5), 736-744. https://doi.org/10.1109/ICMENS.2004. 1509040.
- Gao, S., Guo, L.H. and Zhang, Z. (2021), "Anti-collapse performance of composite frame with special-shaped MCFST columns", Eng. Struct., 245, 112917. https://doi.org/10.1016/j.engstruct. 2021.112917.
- Gao, S., Xu, M., Fu, F. and Guo, L.H. (2019), "Performance of bolted steel-beam to CFST-column joints using stiffened angles in column-removal scenario", J. Constr. Steel Res., 159, 459-475. https://doi.org/10.1016/j.jcsr.2019.05.011.
- GB228-2002 (2002), Metallic Materials Tensile Testing Method of Test at Ambient Temperature. China Standard Press, Beijing, China.
- GB50010-2010 (2010), Code for Design of Concrete Structures. Ministry of Construction of China, Beijing, China.
- Gruben, G., Fagerholt, E., Hopperatad, O.S. and Borvik, T. (2011), "Fracture characteristics of a cold-rolled dual-phase steel", Eur J Mech A-solid., 30(3), 204-218. https://doi.org/10.1016/j.euromechsol.2011.01.004.
- GSA (General Service Administration) (2013), Alternate Path Analysis & Design Guidelines for Progressive Collapse Resistance, General Services Administration, Washington (DC), USA.
- Han, L.H. (2016), Concrete Filled Steel Tubular Structures - Theory and Practice, Science Press, Beijing, China.
- Kang, S.B., Tan, K.H., Liu, H.Y., Zhou, X.H. and Yang, B. (2017), "Effect of boundary conditions on the behaviour of composite frames against progressive collapse", J. Constr. Steel Res., 138, 150-167. https://doi.org/10.1016/j.jcsr.2017.07.005.
- Kong, D.Y., Yang, B., Elchalakani, M., Chen, K. and Ren, L.M. (2020), "Progressive collapse resistance of 3D composite slab system subjected to internal column removal: Experimental and numerical simulation", J. Constr. Steel Res., 172, 106208. https://doi.org/10.1016/j.jcsr.2020.106208.
- Lew, H.S., Main, J.A., Robert, S.D., Sadek, F. and Chiarito, V.P. (2013), "Performance of steel moment connections under a column removal scenario. I: Experiments", J. Struct. Eng., 139(1), 98-107. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000618.
- Lu, X.Z., Lin, K.Q., Li, Y., Guan, H., Ren, P.Q. and Zhou, Y.L. (2017), "Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column removal scenario", Eng. Struct., 149, 91-103. https://doi.org/10.1016/j.engstruct.2016.07.039.
- Lu, X.Z., Zhang, L., Lin, K.Q. and Li, Y. (2019), "Improvement to composite frame systems for seismic and progressive collapse resistance", Eng. Struct., 186, 227-242. https://doi.org/10.1016/j.engstruct.2019.02.006.
- Ma, F., Gilbert, B.P., Guan, H., Lu X.Z. and Li, Y. (2019), "Experimental study on the progressive collapse behavior of RC flat plate substructures subjected to corner column removal scenarios", Eng. Struct., 180, 728-741. https://doi.org/10.1016/j.engstruct. 2020.110299.
- Meng, B., Li, L.D., Zhong, W.H., Tan, Z. and Zheng, Y.H. (2021), "Anti-collapse performance analysis of unequal span steel-concrete composite substructures", Steel Compos. Struct., 39(4), 383-399. https://doi.org/10.12989/scs.2021.39.4.000.
- Pham, A.T., Lim, N.S. and Tan, K.H. (2017), "Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions", Eng. Struct., 150, 520-536. https://doi.org/10.1016/j.engstruct.2017.07.060.
- Qian, K., Lan, X., Li, Z., Li, Y. and Fu, F. (2020), "Progressive collapse resistance of two-story seismic configured steel sub-frames using welded connections", J. Constr. Steel Res. 170, 106117. https://doi.org/10.1016/j.jcsr.2020.106117.
- Wang, J.J., Wang, W., Bao, Y.H. and Lehman, D. (2019), "Full-scale test of a steel moment-resisting frame with composite slab under a penultimate edge column removal scenario", J. Constr. Steel Res., 162, 1-13. https://doi.org/10.1016/j.jcsr.2019.105717.
- Wang, J.X., Yang, Y., Xian, W. and Li, Q.Y. (2020), "Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted-welded hybrid connection", Int J Steel Struct, 20(5), 1618-1635. https://doi.org/10.1007/s13296-020-00397-3.
- Wang, J.X., Shen, Y.J., Gao, S. and Wang, W.D., (2022), "Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal", Eng. Struct., 266, 114635. https://doi.org/10.1016/j.engstruct.2022.114635.
- Wang, W., Fang, C., Qin, X., Chen, Y.Y. and Li, B. (2016), "Performance of practical beam-to-SHS column connections against progressive collapse", Eng. Struct., 106, 332-347. https://doi.org/10.1016/j.engstruct.2015.10.040.
- Wang, W.D., Zheng, L. and Li, H.W. (2020), "Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario", Eng. Struct., 219, 110956. https://doi.org/10.1016/j.engstruct.2020.110956.
- Yang, B., Tan, K.H., Xiong, G. and Nie, S.D. (2016), "Experimental study about composite frames under an internal column-removal scenario", J. Constr. Steel Res., 121, 341-351. https://doi.org/10.1016/j.jcsr.2016.03.001.
- Yang, X.J., Lin. F. and Gu. X.L. (2021), "Experimental study on a novel method to improve progressive collapse resistance of RC frames using locally debonded rebars", J. Struct. Eng., 41, 102428. https://doi.org/10.1016/j.jobe.2021.102428.
- Zandonini, R., Baldassino, N., Freddi, F. and Roversoa, G. (2019), "Steel-concrete frames under the column loss scenario: An experimental study", J. Constr. Steel Res., 162, 105527.1-105527.21. https://doi.org/10.1016/j.jcsr.2019.02.036.
- Zhong, W.H., Tan Z., Tian, L.M., Meng, B. and Zheng, Y.H. (2020), "Collapse resistance of composite beam-column assemblies with unequal spans under an internal column-removal scenario", Eng. Struct., 206, 110143. https://doi.org/10.1016/j.engstruct.2019.110143.
- Zhu, Y.F., Chen, C.H., Huang, Y., Huang, Z.H., Yao, Y. and Keer, L.M. (2021), "Component-based model for posttensioned steel connections against progressive collapse", Steel Compos. Struct., 40(4), 481-493. https://doi.org/10.12989/scs. 2021.40.4.481.